TC-STAR Project
Deliverable no.13

	[image: image17.wmf]
	Technology and Corpora for Speech to Speech Translation
 http://www.tc-star.org
	[image: image2.png]

	
	
	

	Project no.:
	FP6-506738

	Project Acronym:
	TC-STAR

	Project Title:
	Technology and Corpora for Speech to Speech Translation

	Instrument:
	Integrated Project

	Thematic Priority:
	IST

Deliverable no.: D13
Title: Specification and Documentation of APIs
	Due date of the deliverable:
	31st of March 2005

	Actual submission date:
	11th of July 2005

	Start date of the project:
	1st of April 2004

	Duration:
	36 months

	Lead contractor for this deliverable:
	IBM

	Author(s):
	Honza Kleindienst and Tomas Macek (IBM)

Revision: [version 2]

	Project co-funded by the European Commission within the Sixth Framework Programme (2002-2006)

	Dissemination Level

	PU
	Public
	X

	PP
	Restricted to other programme participants (including the Commission Services)
	

	RE
	Restricted to a group specified by the consortium (including the Commission Services)
	

	CO
	Confidential, only for members of the consortium (including the Commission Services)
	

Table of Contents

31.
Introduction

42.
TC-STAR Use Cases

63.
API Requirements

64.
UIMA Specification

145.
UIMA as TC-STAR architecture framework

196.
Approach to the specification of TC-STAR Media and Text Processing APIs

207.
Automatic Speech Recognition (ASR)

228.
Speech language translation (SLT)

239.
Text-to-speech (TTS)

24Conclusion

24Glossary of Key UIMA Terms

25References

1. Introduction

1.1. Scope

The purpose of the deliverable Specification and Documentation of APIs is to describe the interfaces used between the main constituents of the TC-STAR system – the media and text processing engines. Conceptually, this deliverable builds on the previous deliverable TC-STAR Functional requirements [1], which identified and analyzed the main TC-STAR use cases. It also follows the TC-STAR architecture design option presentation given at the General Assembly meeting in Barcelona on November 2004, where three possible architecture options were presented: MRCP, Web Services, and UIMA. At the General Assembly meeting in Trento on Apr 2005, the consortium made the decision to build the TC-STAR architecture on the foundation of the UIMA framework. After SRIT left the project, it was also agreed that IBM, having all ASR, SLT, and TTS engines available, will demonstrate an end-to-end UIMA-based system as the reference implementation at the end of 2005.

Such a reference implementation will reflect the state of the standardized API specification at that time. We anticipate that the definition of APIs and the associated standardized data structures will pass through several iterations before reaching an accepted level of maturity and generality. The proposed review cycle is specified at the end of the deliverable.
1.2. Goals
The role of the architecture group in the TC-STAR is to use industry-standard approaches

and methodologies for software development to help the partners achieve the TC-STAR goals

as specified in the Technical Annex. One part of this process is to play active role in negotiating, proposing, and leading the common abstractions and API definitions, so that component interoperability and reusability is achieved between partners. The experience shows that the initial harmonization of the views may take significant time and effort for all parties involved. Yet it is the fundamental and unevitable phase of the project lifecycle, especially when there are many partners (and thus many views) involved as is the case of TC-STAR.

The goal of TC-STAR is to define a system architecture for speech-to-speech translation. Text and media processing engines developed by several TC-STAR partners provide the foundation of these systems. The system should be able to easily integrate components developed by members of the consortium as well as 3rd party components. This will be achieved by specifying a set of standardized APIs, including the data structures exchanged between the components.

An additional TC-STAR goal is to contribute to standardization of the APIs developed within the WP5 Architecture. To increase the impact of such standardization efforts, a liaison with other relevant projects (e.g. CHIL) is maintained.
1.3. Document Overview

This document deals with the specification of APIs and respective data structures. This is an iterative process, planned to take several cycles of revisions. In the document, we will use the following colored text box to indicate open API issues

This indicates an open issues; should be resolved in next iteration of the API

Chapter 2 highlights the TC-STAR use cases that govern the process of definition of the APIs.
Chapter 3 captures the general requirements for text and media processing engines. These requirements govern the infrastructure set-up, affect the configuration of components and may determine the deployment process..
Chapter 4 describes the Unstructured Information Management Framework (UIMA), the key foundation of the TC-STAR architecture. It introduces the basic UIMA concepts which are needed for subsequent discussion.
Chapter 5 discusses why UIMA was chosen as the main infrastructure for TC-STAR and how the UIMA concepts map to the TC-STAR domain and vice versa.

Chapter 6 narrows the standardization focus to the definition of XML-based data types being exchanged between TC-STAR UIMA components. We also introduce the review cycle that shows the path that will lead to the final, standardized TC-STAR API.
Chapter 7, Chapter 8, Chapter 9 deal with input/output specification for ASR, SLT, and TTS engines respectively.
2. TC-STAR Use Cases

TC-STAR defines two major uses cases:

· Use Case 1: Automatic Evaluation of TC-STAR Components

· Use Case 2: Online speech to speech translation (optional)

These use cases are described in more detail in the preceding deliverable TC-STAR Functional Requirements [1]. They govern the collection of requirements on the architecture in general and on the text and media processing engine APIs in particular.
2.1. Use Case 1: Automatic Evaluation of TC-STAR Components
This use case describes the situation of automatic evaluation of TC-STAR Components. This case is described by the following steps as depicted in Figure 1:
· Step 1: Distribution of test data from evaluator to sites

· Step 2: Processing data on site

· Step 3: Return of processed data to evaluator

· Step 4: Evaluation at evaluator’s site and result analysis (Automatic/Human)
This use case unfolds into several variants based on:

· Deployment type: distributed (site infrastructure support needed) vs. co-located infrastructure
· Data provisioning: offline vs. real-time ; binary blobs vs. streaming
· Evaluation workflow control: evaluator-paced (Steps 1-4 are controlled by evaluator) vs. site-paced (Steps 1-3 controlled by site; Step 4 by evaluator)

[image: image3]
Figure 1: Automatic Evaluation of TC-STAR Components
2.2. Use Case 2: Online speech to speech translation (optional)

This use case is described by the following steps (Figure 2):
· Step 1-3: Life audio feed flows to the ASR component
· Step 4-6: Recognized text is processed by spoken language translation (SLT)
· Step 8-9: Translated text is turned into output audio by TTS and delivered to the user
In this case, data is processed from a phone or a PDA. Infrastructure is set-up as a collocated deployment.

[image: image4]
Figure 2: Online speech to speech translation
3. API Requirements

The previous deliverable TC-STAR Functional Requirements [1] focused on the general requirements of the architecture. In this deliverable we want to capture the requirements particularly pertaining to the design of TC-STAR text and media processing components. The following requirements were derived from the problem domain defined by the use cases introduced in the previous chapter. This requirement collection is not yet complete and may grow, based on the subsequent discussions during the iterative review cycles.
· Data structures are described in a platform agnostic XML format
· Data is structured in such a way to support post-recognition fusion, e.g. ROVER
· Data is represented in a common analysis structure and thus visible to all media processing engines
· Liaison to existing XML families, e.g. SSML is maintained
· Support for monitoring/debugging is included
The proposed API was defined independently of application and platform considerations and introduced on top of the UIMA framework. The following paragraph overviews the basic UIMA concepts. This is necessary to establish a proper taxonomy for mapping the API terms to UIMA concepts.

4. UIMA Specification

The APIs for media and text processing engines used in TC-STAR, namely ASR, TTS, and SLT, will be based on the open framework called UIMA [2]. Before we get down to defining the APIs and respective data structures, the reading of the definitions of the basic UIMA terms and concepts is recommended.
The Unstructured Information Management Architecture (UIMA) is an architecture and software framework for creating, discovering, composing and deploying a broad range of multi-modal analysis capabilities and integrating them into complex search technology systems. The UIMA framework provides a run-time environment, in which developer can plug in and run their UIMA component implementations, and with which they can build and deploy UIM applications. The framework is not specific to any IDE or platform. The UIMA Software Development Kit (SDK) includes an all-Java implementation of the UIMA framework for the implementation, description, composition, and deployment of UIMA components and applications. In the next sections we provide a high-level overview of the architecture, introduce basic components, and highlight major UIMA concepts and techniques.

4.1. Structured versus Unstructured Information

Structured information may be characterized as information which intended meaning is unambiguous and explicitly represented in the structure or format of the data. The canonical example of structured information is a relational database table.
Unstructured information may be characterized as information, which intended meaning is only loosely implied by its form and therefore requires interpretation in order to approximate and extract its intended meaning. Examples include natural language documents, speech, audio, still images, and video. One reason for focusing on deriving implied meaning from unstructured information is that 80 percent of all corporate information is unstructured. An even more compelling reason is the rapid growth of the Web and the perceived value of its unstructured information to applications that range from e-commerce and life science applications to business and national intelligence.
An unstructured information management (UIM) application may be generally characterized as a software system that analyzes large volumes of unstructured information in order to discover, organize, and deliver relevant knowledge to the end user. An example is an application that processes millions of medical abstracts to discover critical drug interactions. Another example is an application that transcribes thousands of audio records, indexes the interesting entities in text and translates them into another language. We have seen a sharp increase in the use of UIM analytics (the analysis component of UIM applications), in particular text and speech analytics, within the class of applications designed to exploit the large and rapidly growing number of sources of unstructured information.
In analyzing unstructured content, UIM applications make use of a variety of technologies including statistical and rule-based natural language processing (NLP), information retrieval, machine learning, ontologies, and automated reasoning. UIM applications may consult structured sources to help resolve the semantics of the unstructured content. For example, a database of chemical names can help focus the analysis of medical abstracts. A database of pronunciations of various entities of interest can help analyze audio data for transcription and translation. A UIM application generally produces structured information resources that unambiguously represent content derived from unstructured information input.
4.2. Document-level analysis

In document-level analysis, the focus is on an individual document (as opposed to a collection of documents). The analysis component takes that document as input and outputs its analysis as meta-data describing portions of the original document. These may refer to the document as a whole or to any sized region of the document. In general, we use the term document to refer to an arbitrarily grained element of unstructured information processing. For example, for an UIM application, a document may represent an actual text/audio/video document, a fragment of such a document or even multiple such documents. Examples of document-level analyses include language detection, tokenization, syntactic parsing, named-entity detection, classification, summarization, and translation. Another example includes speech recognition, speaker identification, translation, and speech synthesis. In each of these examples, the analysis component examines the document and associated meta-data and produces additional meta-data as result of its analysis. An analysis component may be implemented by composing a number of more primitive components. The output of each stage consists of the document with the result of the analysis. For example, the output of the language identifier component consists of the document annotated with a label that specifies its language; the output of the de-tagger component consists of the document with HTML tags identified and content extracted, and so on. Composition of analysis components is a valuable aspect of UIMA, because implementing each of the analysis components may require specialized skills. Thus, when uniquely skilled individuals or teams build complex programs, reuse through composition becomes particularly valuable in reducing redundant effort.

4.3. Analysis Engines (AEs)
UIMA is an architecture in which basic building blocks called Analysis Engines (AEs) are composed to first analyze a document and than infer and record descriptive attributes about the document as a whole, and/or about regions therein. The AEs produce descriptive information which are referred to as analysis results. UIMA supports the analysis of different modalities including text, audio and video. The majority of examples we provide so far are for text. We use the term document, therefore, to refer in general to any unit of content that an AE may process, whether it is a text document or a segment of audio, for example. Analysis results include different statements about the content of a document. For example, the following is an assertion about the topic of a document:
(1) The topic of document D102 is "CEOs and Golf".

Analysis results may include statements describing regions more granular than the entire document. The term span is used to refer to a sequence of characters in a text document. Consider that a document with the identifier D102 contains a span, "Fred Centers" starting at character position 101. An AE that can detect persons in text may represent the following statement as an analysis result:

(2) The span from position 101 to 113 in document D102 denotes a Person
In both statements, 1 and 2 above special, pre-defined terms, “Topic” and “Person”, have been used. In UIMA these are called Types. UIMA types characterize the kinds of results that an AE may create – more on types later. Further analyses results may relate two or more statements. For example, an AE might record as its result that the two spans are both referring to the same persons:

(3) The person denoted by span 101 to 111 and the Person denoted by span 142 to 144 in document D102 refer to the same Entity.
The above statements are just some examples of the kind of results that AEs may record to describe the content of the documents they analyze. These examples do not indicate the form in which to capture these results in UIMA. More details will be provided later in the text.
AEs have a standardized interface and may be declaratively composed to build aggregate analysis capabilities. AEs can be built by composition and can have a recursive structure — the primitive AEs may be core analysis components implemented in C++ or Java, whereas aggregate AEs are composed of such primitive AEs or other aggregate AEs. Because aggregate AEs and primitive AEs have exactly the same interfaces, it is possible to recursively assemble advanced analysis components from elements that are more basic while the implementation details are transparent to the composition task.
4.4. Annotators

The UIMA framework treats Analysis Engines as pluggable, composible, discoverable, and manageable objects. At the heart of AEs are the analysis algorithms that do all the work to analyze documents and record analysis results (e.g., detecting person names, recognizing speech, or synthesizing speech from text). UIMA provides a basic component intended to house the core analysis algorithms running inside AEs. These components are called Annotators. The UIMA framework provides the necessary methods for taking Annotators and creating analysis engines. In UIMA the analysis algorithm developer takes on the role of the Annotator Developer.
Imagine that AEs are the stackable containers for Annotators and other analysis engines. AEs provide the necessary infrastructure for composition and deployment of Annotators within the UIMA framework. The simplest AE contains exactly one Annotator at its core. Complex AEs may contain a collection of other AEs each potentially containing within them other AEs.
4.5. Common Analysis Structure (CAS)

How Annotators represent and share their results is an important part of the UIMA architecture. UIMA defines a Common Analysis Structure (CAS) precisely for these purposes. The CAS is an object-based data structure that admits the representation of objects, properties and values. Object types may be related to each other in a single inheritance hierarchy. Analysis developers share and record their analysis results in terms of an object model and within the CAS. Since UIMA admits the simultaneous analysis of multiple views of a document (potentially in different modalities, for example the audio and the closed captioned views) we refer to the view being analyzed, more generally as the subject of analysis. The CAS therefore may contain one or more subjects of analysis plus the descriptive objects that represent the analysis results.
The UIMA framework includes an implementation and interfaces to the CAS. A CAS that contains statement 2 (repeated from above)
(2) The span from position 101 to 113 in document D102 denotes a Person
would include objects of the Person type. For each Person found in the body of a document, the AE would create a Person object in the CAS and link it with the span of text from 101 to 112, where the person was mentioned in the document. While the CAS is a general-purpose representational structure, UIMA defines a few basic types and provides the developer the ability to extend these to define an arbitrarily rich Type System. You can think of a type system as an object scheme for the CAS. A type system defines the various types of objects to be discovered in documents and recorded by AEs. As suggested above, Person may be defined as a type. Types have properties or features. So for example, Age and Occupation may be defined as features of the Person type. Other types might be Organization, Company, Bank, Facility, Money, Size, Price, Phone Number, Phone Call, Relation, Network Packet, Product, Noun Phrase, Verb, Color, Parse Node, Feature Weight Array, etc. There are no limits to the different types that may be defined in type system. A type system is domain and application specific. Types in a UIMA type system may be organized in a taxonomy. For example, Company may be defined as a subtype of Organization or Noun Phrase may be a subtype of a Parse Node.

4.6. Annotation Type

The annotation type is a general and widely used type. The annotation type is used in text analysis and often additional types are derived from it. The annotation type annotates or labels regions of a document. The annotation type includes two features, namely begin and end. Values of these features represent offsets in the document and delimit a span. The key idea here is that the annotation type identifies and labels a specific region of a document. Consider that the Person type defines a subtype of an annotation. An annotator, for example, can create a Person annotation to record the discovery of a mention of a person between position 58 and 61 in document D102. The annotator can create another person annotation to record the detection of a mention of a person in the span between positions 110 and 111.

While the annotation type is a useful type for annotating regions of a document, they are not the only kind of types in a CAS. A CAS is a general representation scheme that may store arbitrary data structures to support the analysis of documents. As an example, consider statement (3) above (repeated from above).
(3) The Person denoted by span 101 to 113 and the Person denoted by span 142 to 144 in document D102 refer to the same Entity.
This statement mentions two person annotations in the CAS, the first, call it P1 delimiting the span from 101 to 113, and the other, call it P2, delimiting the span from 142 to 144. Statement 3 asserts explicitly that these two spans refer to the same entity. This means that while there are two expressions in the text represented by the annotations P1 and P2, they each refer to the same person. The Entity type may be introduced into a type system to capture this kind of information. The Entity type is not an annotation. It is intended to represent an object in the domain, which may be referred to by many different expressions occurring multiple times within a document (or a collection of documents). The Entity type has a feature named occurrences. This feature is used to point to all the annotations believed to refer to the same entity. Consider that the spans annotated by P1 and P2 were "Fred Centers" and "He" respectively. The annotator might create a new Entity object called “FredCenters”. To represent the relationship stated in (3), the annotator may link “FredCenters” to both P1 and P2 by making them values of the occurrences feature. Conceptual 2-28 Overview Figure 2 also illustrates that an entity may link to annotations referring to regions of image documents as well. To do this the annotation type would need to be extended with the appropriate features to point to regions of an image.
4.7. Interacting with the CAS and External Resources

The two main interfaces that component developer interacts with are the Common Analysis Engine (CAS) and the UIMA Context. UIMA provides an efficient implementation of the CAS with multiple programming interfaces. Through these interfaces, the annotator developer interacts with the document and reads, and writes analysis results. The CAS interfaces provide a suite of access methods that allow the developer to obtain indexed Iterators to the different objects in the CAS. While many objects may exist in a CAS, the annotator developer can obtain a specialized Iterator to all Person objects for example. For Java annotator developers, UIMA provides the JCAS. This interface provides the Java developer with a natural interface to CAS objects. Each type declared in the type system appears as a Java Class. Therefore, the UIMA framework would render the Person type as a Person class in Java. As the analysis algorithm detects mentions of persons in the documents, it can create Person objects in the CAS.
In addition to interacting with the CAS, the component developer can access external resources through the framework's resource manager interface called the UIMA Context. This interface, among other things, can ensure that different annotators working together in an aggregate flow may share the same instance of an external file for example.
4.8. Component Descriptors

UIMA defines a small set of core components. Annotators and AEs are two of the basic building blocks specified by the architecture. Developers implement them to build and compose analysis capabilities and ultimately applications. There are others components in addition to these, but for every component specified in UIMA there are two parts required for its implementation:
1. The declarative part
2. The code part
The declarative part, which contains metadata describing the component, its identity, structure and behavior, is called the Component Descriptor. Component descriptors are represented in XML. The code part implements the algorithm.
The code part may be a program in Java. To implement a UIMA component, a UIMA developer typically provides two things: the code and the Component Descriptor. Note that in many cases the code may be already provided by sub components. In these cases, the developer may not be developing new code but rather providing the code part by pointing to other components. Component descriptors are represented in XML and aid in component discovery, reuse, composition and development tooling. UIMA provides tools for easily creating and maintaining the component descriptors that relieve the developer from editing XML directly.
Component descriptors contain standard metadata including the component's name, author, version, and a pointer to the class that implements the component. In addition to these standard fields, a component descriptor identifies the type system the component uses and the types it requires in an input CAS and the types it plans to produce in an output CAS. For example, an AE that detects person types may require as input a CAS that includes a tokenization and deep parse of the document. The descriptor refers to a type system to make the component's input requirements and output types explicit. In effect, the descriptor includes a declarative description of the components behavior and can be used to aid in component discovery and composition based on desired results. UIMA analysis engines provide an interface for accessing the component metadata represented in their descriptors.

4.9. Aggregate Analysis Engines

A simple or primitive UIMA Analysis Engine (AE) contains a single annotator. AEs, however, may be defined to contain other AEs organized in a workflow. These more complex analysis engines are called Aggregate Analysis Engines. Annotators tend to perform fairly granular functions, for example language detection, tokenization or part of speech detection. Advanced analysis, however may involve an orchestration of many of these primitive functions. An AE that performs named entity detection, for example, may include a pipeline of annotators starting with language detection feeding tokenization, then part-of-speech detection, then deep grammatical parsing and then finally named-entity detection. Each step in the pipeline is required by the subsequent analysis. For example, the final named-entity annotator can only do its analysis if the previous deep grammatical parse was recorded the CAS.
Aggregate AEs encapsulate potentially complex internal structures and insulate it from users of the AE. In our example, the aggregate analysis engine developer simply acquires the internal components, defines the necessary flow between them and publishes the resulting AE. Consider the simple example where "My Named-Entity Detector" is composed of a linear flow of more primitive analysis engines. Users of this AE need to know its name and its published input requirements and output types but not the internal AE construction. These are declared within the aggregate AE descriptor. Aggregate AE descriptors declare the components they contain and a flow specification. The flow specification defines the order in which the internal component AEs should be run. The internal AEs specified in an aggregate are also called the delegate analysis engines. We refer to the development role associated with building an aggregate from delegate AEs, the Analysis Engine Assembler.
The UIMA framework, given an aggregate analysis engine descriptor, will run all delegate AEs, ensuring that each one gets access to the CAS in the sequence produced by the flow specification. The UIMA framework is equipped to handle different deployments where the delegate engines, for example, are tightly coupled (running in the same process) or loosely coupled (running in separate processes or even on different machines).
UIMA supports a number of remote protocols for loose-coupled deployments of aggregate analysis engines, including SOAP. The UIMA framework facilitates the deployment of AEs as remote services by using an adapter layer that automatically creates the necessary infrastructure in response to a declaration in the component's descriptor.
The UIMA framework currently supports a linear flow between components with conditional branching based on the language of the document. The workflow engine is a pluggable part of the framework, however, and to support more complex flow specifications easy updates can be done. Furthermore, the application developer is free to create multiple AEs and provide their own logic to combine the AEs in arbitrarily complex flows.
4.10. Using UIMA from Application

As mentioned above, the basic AE interface may be thought of as a simply CAS in / CAS out system.
The application is responsible for the:

1. interaction with UIMA framework to instantiate an AE,
2. creation of an appropriate CAS,
3. initialization of the input CAS with a document and
4. the passing to the AE through the process method
The AE, possibly calling many delegate AEs internally, performs the overall analysis and its process method returns the CAS containing new analysis results. The application then decides what to do with the returned CAS. There are many possibilities. For instance, the application could display the results, store the CAS to disk for post processing, extract and index analysis results as part of a search application etc. The UIMA framework provides methods to support the application developer in creating and managing CASs and instantiating, running and managing AEs.
Many UIM applications analyze entire collections of documents. They connect to different document sources and do different things with the results. However, in all cases the application must generally follow these logical steps:
1. connect to a physical source

2. acquire a document from the source

3. initialize a CAS with the document to be analyzed

4. input the CAS to a selected analysis engine

5. process the resulting CAS

6. go back to 2 until the collection is processed

7. do any final processing required after all the documents in the collection have been analyzed
UIMA includes this kind of support for collection processing in UIM applications through its Collection Processing Architecture introduced in the next chapter.
4.11. Highlights of UIMA Collection Processing
UIMA includes the support for collection processing in UIM applications through its Collection Processing Architecture. As part of the collection processing architecture UIMA introduces two primary components in addition to the annotator and analysis engine. These are the Collection Reader and the CAS Consumer. The collection reader's job is to connect to and iterate through a source collection, acquiring documents and initializing CASs for analysis.

Since the structure, access and iteration methods for physical document sources vary independently from the format of stored documents, UIMA defines another type of component called a CAS Initializer. The CAS Initializer's job is specific to a document format and specialized logic for mapping that format to a CAS. In the simplest case, a CAS Initializer may take the document and insert it as a subject of analysis in the CAS. A more advanced scenario is one where the CAS Initializer may be implemented to handle documents that conform to a certain XML schema, map some subset of the XML tags to CAS types, and then insert the de-tagged document content as the subject of analysis. Collection readers may be reusing CAS Initializer plug-ins.
CAS consumers, as the name suggests, function at the end of the flow. Their job is to do the final CAS processing. A CAS consumer may be implemented, for example, to index CAS contents in a search engine, extract elements of interest and populate a relational database or serialize and store analysis results to disk for subsequent and further analysis.
A UIMA Collection Processing Engine (CPE) is an aggregate component that specifies a "source to sink" flow from collection reader though a set of analysis engines and then to a set of CAS Consumers. CPEs are specified by XML files called CPE Descriptors. These declarative specifications point to their contained components (collection readers, analysis engines and CAS consumers) and indicate a flow among them. The flow specification allows for filtering capabilities, e.g. to skip over AEs based on CAS contents.
The UIMA framework includes a Collection Processing Manager (CPM). This infrastructure is capable of reading a CPE descriptor, and deploying and running the specified CPE. A key design point in collection processing is failure recovery. Since collections may be large, a configurable behavior of the CPM is to log faults on single document failures while continuing to process the collection (analysis components tend to be the weakest link; in practice, they may choke on strangely formatted content). This deployment option requires that the CPM run in a separate process or machine distinct for the CPE components. The CPE may be configured to run with a variety of CPM deployment options.
5. UIMA as TC-STAR architecture framework

The previous chapters introduced the TC-STAR use cases and also introduced UIMA as a flexible framework for facilitating text and media processing tasks. In this section it is shown how UIMA addresses the TC-STAR requirements, how the key UIMA abstractions map to TC-STAR architectural concepts, and how UIMA fits the distributed standardized media processing goal of TC-STAR.

5.1. How UIMA addresses TC-STAR needs?
TC-STAR is envisioned as a long term effort focused on advanced research in all core technologies for speech-to-speech translation (SST). This includes automatic speech recognition (ASR), spoken language translation (SLT) and text-to-speech (TTS).

The objectives of the project are extremely ambitious: to make a break-through in SST research, significantly reducing the gap between human and machine performance. The focus is on the development of new, possibly revolutionary, algorithms and methods, integrating relevant human knowledge, which is available at translation time into a data-driven framework. In the first three years TC-STAR’s goal is the implementation of an evaluation infrastructure based on competitive evaluation, in order to achieve the desired break-throughs.
Hence, the key aspects that TC-STAR architecture needs to address is the emphasis on integration of various third-party technologies and algorithms into a flexible evaluation test bed, using standardized APIs over local or remote infrastructure.

UIMA, which has been designed with very similar principles in mind, provides a very good match for these needs. Here are the specific TC-STAR needs addressed by UIMA:
· Standardized APIs: Through its common format of data – the Common Analysis Structure (CAS) -- UIMA facilitates the TC-STAR standardization needs. The partners can narrow the API standardization work to a definition of a common TC-STAR TypeSystem used to describe the data contained in the CAS. The CAS structure is passed between the text and media processing engines and represents the partial result of the analysis (see the time-convoluted gray oval at Figure 3).
· Integration support: Integration of various algorithms and technologies into a single umbrella system is the main strength of UIMA framework. This is achieved via the abstraction of the Annotator (see green ASR, SLT, TTS and violet Evaluation box at Figure 3) that plugs to UIMA via compact Java/C++ interfaces. The interface provides simple input and output capabilities. Using this API, the CAS is passed to an Annotator, e.g. the ASR on the figure. The ASR processes the data and appends the results to the CAS, returning the updated CAS via the same UIMA API. Any engine that supports the API and understands the TC-STAR TypeSystem can be plugged into TC-STAR architecture. The engine developers just need to write the transformer that maps the TypeSystem concepts to their engine-specific input and output parameters.
[image: image5.wmf]proprietary

ASR

Evaluation

data

CAS

Initializer

Common

Analysis

Structure (CAS)

audio

Site1

proprietary

SLT

Site2

Site3

Evaluation

Site4

metrics

lattice

recognized text

audio

UIMA Collection Processing Manager

TTS output

lattice

recognized text

audio

Evaluation

results

lattice

translated text

audio

recognized text

translated text

proprietary

TTS

ASR1

ASR2

workflow sequencer

Evaluator site1

Vinci

Name

Server

transformer

transformer

UIMA C++ API

UIMA Java API

transformer

UIMA C++ API

SOAP

Vinci

SOAP

transformer

UIMA Java API

same

JVM

proprietary

ASR

Evaluation

data

CAS

Initializer

Common

Analysis

Structure (CAS)

audio

Site1

proprietary

SLT

Site2

Site3

Evaluation

Site4

metrics

lattice

recognized text

audio

UIMA Collection Processing Manager

TTS output

lattice

recognized text

audio

Evaluation

results

lattice

translated text

audio

recognized text

translated text

proprietary

TTS

ASR1

ASR2

workflow sequencer

Evaluator site1

Vinci

Name

Server

transformer

transformer

UIMA C++ API

UIMA Java API

transformer

UIMA C++ API

SOAP

Vinci

SOAP

transformer

UIMA Java API

same

JVM

Figure 3: TC-STAR UIMA architecture
· Distributed infrastructure: UIMA infrastructure transparently manages network and local connectivity options. In addition to the collocated deployment, UIMA currently furnishes two remote infrastructure options: standard Web Service protocol SOAP and light-weight variant of SOAP called Vinci (see the arrows at Figure 3). UIMA ensures that the CAS is passed to Annotators in the same way, independently whether the Annotator is connected locally or remotely.
· Flexible evaluation test bed: UIMA’s Collection Processing Manager (blue box at Figure 3) provides means to define a workflow, which describes how various Annotators cooperate and pass data. The configuration of workflow is fully accessible to UIMA developer. Via a simple XML configuration of the CPM, the developer easily defines the ASR->SLT->TTS->Evaluation pipeline. More complicated workflows can be defined via procedural Java code.
5.2. Key UIMA abstractions from TC-STAR perspective

This chapter looks at the UIMA concepts from the perspective of a TC-STAR developer. The specific perspective is that of the text/media processing engine developer. Our discussion is based on Figure 3 where reasonably detailed blueprints of the TC-STAR UIMA evaluation infrastructure are introduced. The TC-STAR UIMA architecture shown in Figure 3 closely resonates with figures describing the TC-STAR use cases in Chapter 2, indicating that there is a close match between UIMA capabilities and TC-STAR applications. In the subsequent text it is assumed that the reader is familiar with the UIMA terms introduced in the previous chapter.
TC-STAR Data Lifecycle

This chapter guides the reader through the example TC-STAR evaluation workflow depicted in Figure 3. The processing of data starts at the left part. The yellow disk indicates the source of the evaluation data, which could be local or remote, streamed or accessed as binary blobs, etc. In the TC-STAR UIMA architecture, it is known that the heart of the data processing is the Common Analysis Structure (CAS), where the cumulative analysis results are stored. TC-STAR CAS is more discussed in the specific subchapter later on. The green box on the picture called CAS Initializer is responsible for constructing the respective TC-STAR CAS. For TC-STAR’s speech-to-speech translation setup, the CAS would typically start with the pointer to the audio data that needs to be processed. Once initialized, the CAS is passed to the first Analysis Engine (AE) in the processing pipeline. The Collection Processing Manager (CMP), depicted at the top part of the picture, controls the sequencing. More on the TC-STAR CMP follows in the respective subchapter.
In TC-STAR, the first AE in the sequence happens to be the Automatic Speech Recognition (ASR) engine, represented by the large green box at the bottom left corner. The CMP passes the CAS data object (represented by the oval) to the ASR AEs via a simple UIMA API call. The ASR AEs runs the recognition, places the recognized sentence plus the additional recognition results in the CAS, and returns the updated CAS to the CPM. As depicted in the figure, the ASR AE can be actually an aggregate of several other ASR AEs (e.g., the top ASR AE runs ROVER post-processing on the results provided by aggregated ASR AEs of different providers.). The ASR AE can run collocated with the CMP or can be deployed on a remote machine using the Web Service envelope supported by UIMA for passing the CAS object.
In the subsequent step, the CMP continues the pipeline processing cycle by passing the CAS to the Spoken Language Translation (SLT) AE. Note, that the CAS now contains both the link to the original audio plus the results of the preceding ASR analysis. The SLT AE works with the data in CAS to produce the translation and appends the results into the CAS. The SLT box on the figure contains a smaller replica of the overall setup to document the flexibility of UIMA infrastructure. It is possible that a single AE actually contains the complete collection processing mechanism involving other AEs, so in this case the SLT AE can contain the small universe of different AEs managed by a dedicated CPM, still presenting itself to the outside as a single SLT AE.

When the CMP passes the updated CAS to the Text-to-Speech (TTS) AE, the CAS already contains the original audio, and the results of both preceding analysis – ASR and SLT. It is up to the TTS AEs to choose which data it utilizes from the CAS for its speech synthesis work. In addition to the text produced by SLT, it may for example use as input the original audio also available in the CAS.
Afterward, the resulting CAS is passed to the Evaluation AE (the violet box on the picture) that compares the results of the analysis with the “ground truth” or sends the data for further processing to human evaluators.
The CMP then restarts the analysis cycle with the next piece of data (next session) on the input until all data is processed. The developer can also use the CAS Consumer to support the organization of output data and facilitate the inter-session data access (e.g. use adaptation vectors fromthe previous sentence). For the sake of simplicity, CAS Consumer is not depicted in Figure 3.
TC-STAR CAS
As seen from the description in previous chapters, the TC-STAR Common Analysis Structure (CAS) is an important abstraction that links all TC-STAR Analysis Engines (AEs) and defines the common XML language by which the TC-STAR AEs exchange data. Basically, the CAS is an object-based data structure that represents objects, their properties and values. Object types may be related to each other in a single inheritance hierarchy. The CAS therefore may contain one or more subjects of analyses plus the descriptive objects that represent the analysis results. TC-STAR CAS will typically have more than one source of analysis, e.g., the input audio and the recognized text as the input to SLT.
How is seamless communication of the TC-STAR components ensured via the TC-STAR CAS? This is done via the TC-STAR Type System. The Type System defines the object schemes for the CAS. It describes various types of objects that are results of the analysis, which may be discovered in documents and are recorded by AEs. A type system is domain and application specific. Yet, any Type System taxonomy is typically derived from simple general data types, where some are already provided by UIMA.

The definition of the TC-STAR Type System is therefore one major activity for the TC-STAR partners in the upcoming months. The last three Chapters 7, 8,9 are dedicated specifically to the bootstrapping of this activity by defining the input and output parameters for the specific TC-STAR engine types.
TC-STAR AE

UIMA uses the Analysis Engine as the basic API mechanism for wrapping the functional component code. In TC-STAR there will be three primary AEs: ASR, SLT, and TTS; and possibly one Evaluation AE. They will be able to exchange data, based on the common TC-STAR Type System.
AEs are built by composition and have a recursive structure, whereas aggregate AEs are composed of such primitive AEs or other aggregate AEs. Because aggregate AEs and primitive AEs have exactly the same interfaces, it is possible to recursively assemble advanced analysis components from basic elements, while the implementation details are transparent to the composition task.
Each TC-STAR AE can be accessed via either Java or C++ interface (see the green / violet lids on the picture). The interface is designed to be very simple and allows passing the CAS data object in and out. The third-party developer writing a TC-STAR UIMA wrapper for his component must ensure the following:
1. the component adheres to the simple Java/C++ UIMA API

2. the component supports the TC-STAR UIMA Type System

Both rules should be programmatically addressed by the “transformer” box (also called “engine wrapper”) depicted in Figure 3, that each third-party engine provider needs to implement.

Each TC-STAR AE will have the declarative part and the code part. The declarative part will contain metadata describing the component, its identity, structure and behavior, using UIMA’s XML-based Component Descriptor. The code part implements the algorithm.
The UIMA framework is equipped to handle different deployments where the delegate engines, for example, are tightly coupled (running in the same process) or loosely coupled (running in separate processes or even on different machines).
TC-STAR AEs will be also able to take advantage of UIMA’s additional data sharing mechanism. In addition to interacting with the CAS, the component developer can access external resources through the framework's resource manager interface called the UIMA Context. This interface, among other things, can ensure that different annotators work together in an aggregate flow and share the same instance of e.g. an external file.

TC-STAR Mediator
In the previous analysis discourse on the TC-STAR architecture we introduced and worked with the concept of a Mediator, a component responsible for orchestrating the workflow of engines in the evaluation infrastructure. In the TC-STAR UIMA, the concept of a Mediator maps to UIMA’s Collection Processing Manager (CPM). The CPM uses an UIMA Collection Processing Engine (CPE), an aggregate component that specifies a "source to sink" flow from collection reader though a set of analysis engines and then to a set of CAS Consumers. CPEs are specified by XML files called CPE Descriptors. The TC-STAR developer can specify the workflow using the CPE Descriptor or provide their individual procedural rules.
The robustness of the system is indicated by how well the system can deal with error recovery. TC-STAR will need a lot of support, because many components will be from third-party providers running in various kinds of configurations, and on unknown data. UIMA collection processing supports failure recovery. Since collections may be large, a configurable behavior of the CPM is to log faults on single document failures while continuing to process the collection. Again, the analysis components tend to be the weakest link. In practice they may choke on strangely formatted content. This deployment option requires that the CPM runs in a separate process or machine distinct for the CPE components. The CPE may be configured to run with a variety of CPM deployment options.
6. Approach to the specification of TC-STAR Media and Text Processing APIs

From the UIMA description above it is clear that UIMA provides the standardized API calls to manage input and output when passing data to text and medial procesing engines (AEs, analysis engines in UIMA terms). The UIMA infrastructure also transparently takes care of network and local connectivity options.
Thus, to enable common APIs, the standardization process should focus on definition of type system, i.e. the input and output data structures exchanged between TC-STAR processing components – ASR, SLT, and TTS. These data structures will be stored and passed in the CAS (UIMA’s Common Analysis Structure) and are thus available to all processing engines.
The development of the API data structures is phased in two stages.
Stage 1: The first stage is the definition of input and output parameters and their types. This includes support for mandatory and option qualification of parameters, to support engine specifics. Once there is a common agreement between partners, Stage 2 is entered.
Stage 2: In this step the functional input/output descriptions specified in Step 1 is turned into a formal TC-STAR Type System specified in XML to be used in UIMA. (For Stage 1 a couple of indicative XML examples are provided to give the reader a feeling of how the XML encoding may look like.)
This version of the document starts at Stage 1, trying to capture the mandatory and optional input/output parameters for ASR, SLT, and TTS. Strong feedback from the partners in WP1, WP2, WP3, and WP4 is expected and needed to produce a set of commonly accepted data structures exchanged between TC-STAR components.
The Gantt chart below will govern this process.

[image: image6]
7. Automatic Speech Recognition (ASR)
In the current version of the ASR API proposal, the primary focus is on the evaluation environment. So for the time being, it is abstracted from other ASR applications domains, e.g. multi-modal. This allows the initial draft to avoid the standardization of real-time features like volume notifications, handling timeouts, etc. This will be done in a second phase (Stage 2) of the standardization process.
7.1. ASR Input
· Pointer to audio waveform or a database of audio corpora
	Parameter
	Mand
	Type
	Description

	Input waveform
	Y
	Binary
	Audio to be transcribed

Table 1: ASR Input
7.2. ASR Output
ASR produces the following mandatory output:

· Recognized sentence, n-best output, n>=1, without casing and puntuation
The following ASR output is optional:

· Sentence confidence

· Word confidence

· Casing

· Punctuation

· Word graphs (lattices)
· Logging and tracing output triggered by parameter
Open issues:

Should partial output be supported? Under which use case?

	Parameter
	Mand
	Type
	Description

	N-best recognized sentences
	Y
	Stringarray
	N=>1;

	Sentence-level confidence
	N
	Number
	Confidence of each ASR output passed into SLT

	Word-level confidence
	N
	Numberarray
	Confidence provided for each recongized word

	Punctuation
	
	
	Punctuation marks for each recognized sentence in N-best list

	Casing
	N
	Stringarray
	Caption for each recognized sentence in N-best list

	Lattice/Wordgraph
	N
	Stringarray
	Lattice/Word graph capturing the alternative word hypotheses for the recognized sentence

	Logging info
	N
	Stringarry
	Sequence of debug messages and trace logs captured in a dedicated <debug> tag

Table 2:ASR Output Parameters
Example ASR1: N-best ASR output with confidence
[image: image1.wmf]Example ASR2: 1-best output with debug information
[image: image8.wmf]
8. Speech language translation (SLT)
The SLT module input/output specifications are described in 3 stages in the order of increasing complexity. The output specifications might need some modifications on the basis of the input specification of the speech synthesis module.

8.1. SLT Input
SLT as the mandatory input expects a sentence that has been already segmented and run through ASR (in either order):

· Sentence-segmented n-best speech recognition output produced without punctuations
The following input is optional:

· Confidence of ASR output

· Sentence segmented 1-best SR Rover output without punctuations

· Sentence punctuation
· Sentence casing

· Logging and tracing output
Note: Input presupposes that n-number of speech recognition outputs are converted into 1-best recognition output by combining best-scored word hypotheses from each system

Open issues:
Should word graph/lattice be listed as the optional input to SLT?
	Parameter
	Mand
	Type
	Description

	N-best sentences to translate
	Y
	Stringarray
	N=>1;

alternatively: sentence segmented 1-best SR Rover output without punctuations

	Target language
	N
	String
	Target language for translation (uses default when not specified)

	Sentence-level confidence
	N
	Number
	Confidence of each ASR output passed into SLT

	Punctuation
	N
	Stringarray
	Punctuation marks for each input sentence in N-best list

	Casing
	N
	Stringarray
	Caption for each input sentence in N-best list

	Error report
	N
	String
	Specification of error

	Logging info
	N
	Stringarry
	Seguence of debug messages and trace logs captured in a dedicated <debug> tag

Table 3:SLT Input Parameters
8.2. SLT Output
SLT produces the following mandatory output:

· Sentence-segmented m-best machine translation output without punctuation

The following output is optional:

· Sentence segmented 1-best MT Rover output with punctuations

· Confidence of SLT Ouput

· Punctuation

· Error reporting

Note: Output presupposes that m-number of machine translation outputs are converted into 1-best translation output by combining best-scored sentence hypothesis from each system.

	Parameter
	Mand
	Type
	Description

	M-best translated sentences
	Y
	Stringarray
	M => 1; Sentence-segmented M-best machine translation output without punctuations

	Confidence
	N
	Number
	Confidence of the SLT output

	Punctuation
	N
	Stringarray
	Punctuation of the SLT output

	Error report
	N
	String
	Specification of error

	Logging info
	N
	Stringarry
	Seguence of debug messages and trace logs captured in a dedicated <debug> tag

Table 4:SLT Output Parameters
Example SLT1: N-best ASR output without confidence

[image: image7]
9. Text-to-speech (TTS)
9.1. TTS Input
TTS takes the following mandatory input:

· Plain text

The optional TTS input is:

· The target language for synthesis

· SSML markup – if supported, it should accept any tags currently defined in the SSML standard [3]. SSML tags that are not supported are ignored.

· Emotion generation support: <prosody emotion="str"> (where str is an emotion descriptor like "good-news" "bad-news" or "uncertainty")

· ToBI annotations: <prosody tobi="H* 2"> , a tag to control prosody via ToBI annotations (the H is the tone (i.e., High), and 2 is the break index or degree of disjuncture between two adjacent words).
	Parameter
	Mand
	Type
	Description

	Text to synthesize
	Y
	Stringarray
	Plain text to be synthesized

	Target language
	N
	String
	Target language for synthesis (uses default when not specified)

	SSML Text
	N
	Stringarray
	SSML Text to be synthesized

	Emotion specification
	N
	Stringarray
	<prosody emotion="str">, e.g. "good-news" "bad-news" or "uncertainty")

	ToBI annotations
	N
	Stringarray
	<prosody tobi="H* 2">, H is the tone (i.e., High), and 2 is the break

Table 5:TTS Input Parameters
9.2. TTS Output
· The output is written to a waveform.
	Parameter
	Mand
	Type
	Description

	Synthesized waveform
	Y
	Binary
	Synthesizer output

	Error report
	N
	String
	Specification of error

	Logging info
	N
	Stringarry
	Seguence of debug messages and trace logs captured in a dedicated <debug> tag

Table 6:TTS Output Parameters
Open issues:
The output format needs to be specified.

Conclusion
This document introduces UIMA as the fundamental enabling framework used for building the TC-STAR architecture. Among other things, UIMA defines the concept of Analytic Engines with a common API for handling engine input and output, both locally and remotely. The TC-STAR text and media processing engines – ASR, SLT, and TTS – will use this API to exchange common data types. The definition of the common data types is the subject of this deliverable. Being an iterative process, this deliverable starts with defining mandatory and optional input and output parameters (Stage 1) and seeking the consensus by all TC-STAR partners. The next phase will be to turn the data structures from verbal description into XML formats for generic use.
Glossary of Key UIMA Terms
	AE
	Analysis Engine

	CAS
	Common Analysis Structure

	CPE
	Collection Processing Engine

	CPM
	Collection Processing Manager

References

[1] TC-STAR Functional Requirements, TC-STAR Document, Jan 2005.
[2] Unstructured Information Management, IBM Journal, p. 455, http://www.research.ibm.com/journal/sj43-3.html
[3] Speech Synthesis Markup Language [SSML], http://www.w3.org/TR/speech-synthesis/

� EMBED FLW3Drawing ���

ASR

SLT

� EMBED FLW3Drawing ���

� EMBED FLW3Drawing ���

� EMBED FLW3Drawing ���

� EMBED FLW3Drawing ���

Evaluator

Player

Profiles

CNTL-Flow

TTS

� EMBED FLW3Drawing ���

Eval-

uation

1

2

3

1

2

3

1

2

3

4

9

8

7

6

5

4

3

2

1

TTS

CNTL-Flow

Real-time operator

� EMBED FLW3Drawing ���

� EMBED FLW3Drawing ���

� EMBED FLW3Drawing ���

SLT

ASRRR

2nd Evaluation 2/28/06

3rd Evaluation 1/31/07

API final

Arch & Design Final 5/06

Usability review

CP 2/06 if Infrastructure

 used for evaluation

 local or distributed

4/1

Review drop

4/1

POC running 12/05

1st freeze

review Design

Improve/adapt existing engine API

1st freeze

2nd freeze

10/1

7/1

1/1

API review cycle 1

Initial specification

2006 Q2 …….Q4

2006 Q1

2005 Q4

2005 Q3

2005 Q2

Review/build

Global build

IBM build

WP5 Proposed Dev. Schedule – Details on Key Phases (05-06)

<slt_output nbest=”3”>

<result n=”1”>Translation 1…</result>

<result n=”2”>Translation 2…</result>

<result n=”3”>Translation 3…</result>

</slt_output>

<asr_output>

<result conf=”0.85”>The quick brown fox jumps over lazy dog</result>

<debug>

 Engine started May 12, 2005 at 10:35

 Audio 16 bits PCM, 65456 bytes.

 Silence detected …

 “the” (0, 25) score 0.5…

</debug>

</asr_output>

<asr_output nbest=”3”>

<result n=”1” conf=”0.85”>The quick brown fox jumps over lazy dog</result>

<result n=”2” conf=”0.70”>A quick brown fox jumps over lazy dog</result>

<result n=”3” conf=”0.20”>A fixed round box pumps lower crazy hog</result>

</asr_output>

PAGE
25
© TC-STAR Consortium

page

[image: image9.wmf][image: image10.wmf][image: image11.wmf][image: image12.wmf][image: image13.wmf][image: image14.wmf][image: image15.wmf][image: image16.wmf]_1179034567.unknown

_1179034569.unknown

_1179034639.unknown

_1179034640.unknown

_1179034638.unknown

_1179034568.unknown

_1179034565.unknown

_1179034566.unknown

_1179034564.unknown

