Thot. New features to deal with larger corpora and longer sentences OpenLab 2006

D .Ortiz, I. García-Varea, F. Casacuberta, L. Rodríguez and J. Tomás

March 30, 2006 - Trento, Italy

- 1 Introduction
- 2 Phrase-based translation (review)
- 3 Thot. A toolkit to train phrase-based models
 - Toolkit description
 - New release features
- 4 Experimental results
 - Experiments
 - Results

- 1 Introduction
- - Toolkit description
 - New release features
- - Experiments
 - Results

What's Thot

- Current state of the art in SMT: phrase-based approach
- Current tasks: huge and difficult
- Available toolkit.
 - decoding(+training): Pharaoh (not GPL, not OpenSource)
- Thot
 - is a GPL toolkit to train PB Statistical Translation Models
 - is Open Source \rightarrow customizable
 - first release delivered on August 2005: http://www.info-ab.uclm.es/simd/software
 - an improved version (planned by April 2006): http://sourceforge.net

Who can use it?

- Machine translation community:
 - MT researchers
 - university programs: PhD and graduated students
 - public institutions: European Union, regional governments
 - private companies
- Linguistic community:
 - typically not familiar with mathematical details
 - non programming skills
 - very useful to obtain bilingual dictionaries automatically

- 1 Introduction
- 2 Phrase-based translation (review)
- 3 Thot. A toolkit to train phrase-based models
 - Toolkit description
 - New release features
- 4 Experimental results
 - Experiments
 - Results

SMT is based on the source-channel model:

$$\arg\max_{e_1^I} Pr(e_1^I|f_1^J) = \arg\max_{e_1^I} Pr(e_1^I) \cdot Pr(f_1^J|e_1^I)$$

$$Pr(e_1^I)$$
: output language model $Pr(f_1^J|e_1^I)$: inverse phrase-based translation model

■ To model the relations at phrase-level (bilingual phrase alignments), a hidden variable $\tilde{\mathbf{a}} = \tilde{a}_1^K$ is introduced:

$$Pr(f_1^J|e_1^I) = \sum_{\mathbf{\tilde{a}}} Pr(\tilde{\mathbf{a}}, \tilde{f}_1^J|\tilde{e}_1^I) = \sum_{\tilde{\mathbf{a}}} Pr(\tilde{\mathbf{a}}|\tilde{e}_1^I) Pr(\tilde{f}_1^J|\tilde{\mathbf{a}}, \tilde{e}_1^I)$$

Typical assumptions to the models reduce them to phrase-based statistical dictionaries:

$$Pr(f_1^J|e_1^I) = \alpha(e_1^I) \sum_{\tilde{\mathbf{a}}} \prod_{k=1}^K p(\tilde{f}_k|\tilde{e}_{\tilde{a}_k})$$

■ Maximum likelihood (ML) estimation: $\theta = \{p(\tilde{f}|\tilde{e})\}$:

$$\hat{\theta} = \arg\max_{\theta} p_{\theta}(f_1^J | e_1^I) = \arg\max_{\theta} \sum_{\tilde{\mathbf{a}}} \prod_{k=1}^{N} p(\tilde{f}_k | \tilde{e}_{\tilde{\mathbf{a}}_k})$$

- Parameter estimation methods:
 - ML estimation via EM algorithm (correct)
 - From single-word alignment matrices (the "classical" approach, heuristic)

- 3 Thot. A toolkit to train phrase-based models
 - Toolkit description
 - New release features
- - Experiments
 - Results

- 3 Thot. A toolkit to train phrase-based models
 - Toolkit description
 - New release features
- - Experiments
 - Results

Toolkit description

Main tools (typically used in that order):

- Alignment combination (∪,∩,Sum,Symm.) → improvements in training
- Parameter estimation of a PB model from word alignment matrices:
 - Relative frequencies (RF): phrase-extract
 - pseudo ML-estimation (pML)
- Bilingual segmentation → post-processing step (e.g. to be used by finite state transducers)

Parameter estimation

 Bilingual phrases must be consistent with its corresponding word alignment matrix A as:([Och. 2002]):

$$\mathcal{BP}(f_1^J, e_1^J, A) = \{(f_j^{j+m}, e_i^{j+n}) : \forall (i', j') \in A : j \le j' \le j + m \land i \le i' \le i + n\}$$

Set of consistent bilingual phrases (right) given a word alignment matrix (left):

source phrase	target phrase		
La	the		
casa	house		
v er de	green		
casa verde	green house		
La casa verde	the green house		
casa verde .	green house .		
La casa verde .	the green house .		

Parameter estimation: RF

- For every (f_1^J, e_1^I, A) :
 - 1 Obtain the set $\mathcal{BP}(f_1^J, e_1^I, A)$
 - $\forall (\tilde{f}, \tilde{e}) \in \mathcal{BP}(f_1^J, e_1^I, A) \text{ update counts:}$

$$count(\tilde{f}, \tilde{e}) = count(\tilde{f}, \tilde{e}) + 1$$

■ Consequently $p(\tilde{f}|\tilde{e})$ is computed as:

$$p(\tilde{f}|\tilde{e}) = \frac{count(f, \tilde{e})}{\sum_{\tilde{f}} count(\tilde{f}, \tilde{e})}$$

Parameter estimation: RF

- For every (f_1^J, e_1^I, A) :
 - 1 Obtain the set $\mathcal{BP}(f_1^J, e_1^I, A)$
 - $\forall (\tilde{f}, \tilde{e}) \in \mathcal{BP}(f_1^J, e_1^I, A)$ update counts:

$$count(\tilde{f}, \tilde{e}) = count(\tilde{f}, \tilde{e}) + 1$$

■ Consequently $p(\tilde{f}|\tilde{e})$ is computed as:

$$p(\tilde{f}|\tilde{e}) = \frac{count(f, \tilde{e})}{\sum_{\tilde{f}} count(\tilde{f}, \tilde{e})}$$

Disadvantage→ bilingual phrases are not considered as part of complete bilingual segmentations

Parameter estimation: pML

- For every (f_1^J, e_1^I, A) :
 - 1 Obtain the set $\mathcal{BP}(f_1^J, e_1^I, A)$
 - Obtain the set $\mathcal{S}_{\mathcal{BP}(f_1^J,e_1^I,A)}$ of all partitions of the pair (f_1^J,e_1^I)
 - $\forall (\tilde{f}, \tilde{e}) \in \mathcal{S}_{\mathcal{BP}(f_1^J, e_1^I, A)}$ update (fractional) counts:

$$count(\tilde{f}, \tilde{e}) + = \frac{N(\tilde{f}, \tilde{e})}{|\mathcal{S}_{\mathcal{BP}(f_1^J, e_1^I, A)}|}$$

 $N(\tilde{f}, \tilde{e})$: number of times that (\tilde{f}, \tilde{e}) occurs in $\mathcal{S}_{\mathcal{BP}(f_1^{J'}, e_1^{J'}, A)}$.

■ Consequently $p(\tilde{f}|\tilde{e})$ is computed as:

$$p(\tilde{f}|\tilde{e}) = \frac{count(\tilde{f}, \tilde{e})}{\sum_{\tilde{f}} count(\tilde{f}, \tilde{e})}$$

Toolkit description

Possible segmentations for a given word-alignment matrix:

Parameter estimation: an example of pML estimation

Bilingual phrase counts for RF and pML estimation

$\tilde{f} - \tilde{e}$	RF	pML	
La — the	1	3/5	(
casa — house	1	1/5	
verde — green	1	1/5	
casa verde — green house	1	1/5	
La casa verde — the green house	1	1/5	
. .	1	3/5	(=
casa verde . — green house .	1	1/5	
La casa verde . — the green house .	1	1/5	

Parameter estimation: RF vs. pML

Given the following word-aligned bilingual pair:

- RF estimation yields 22 phrase pairs
- pML estimation produces 31 segmentations using 21 phrase pairs
- The phrase pair $favor \rightarrow we$ is not part of any valid segmentation

- 1 Introduction
- 2 Phrase-based translation (review)
- 3 Thot. A toolkit to train phrase-based models
 - Toolkit description
 - New release features
- 4 Experimental results
 - Experiments
 - Results

New release features

Limitations of current release of Thot:

- \blacksquare Most used corpora contain a huge amount of data \rightarrow huge $model \rightarrow high memory requirements$
- \blacksquare pML estimation \rightarrow yields a high computational cost to obtain the set of bilingual segmentations
- Useful only for small task

New release features

The new version of Thot

- implements an efficient algorithm to compute the set of bilingual segmentations (for pML estimation)
- provides an incremental learning framework
- is not constrained by the size of the corpora
- provides an API for decoding with:
 - very efficient memory management: low cost data structures
 - an efficient retrieval of PB model probabilities: trie+caching

- - Toolkit description
 - New release features
- 4 Experimental results
 - Experiments
 - Results

- - Toolkit description
 - New release features
- 4 Experimental results
 - Experiments
 - Results

- Experiments developed on the OpenLab 2006 task
- Training and test corpus pre-processed
- Default decoding and training parameters
- lacksquare Training o comparison between

Pharaoh: RF estimation
Thot: pML estimation

 $lue{}$ Decoding o Pharaoh decoder

- 1 Introduction
- 2 Phrase-based translation (review)
- Thot. A toolkit to train phrase-based models
 - Toolkit description
 - New release features
- 4 Experimental results
 - Experiments
 - Results

OpenLab corpus results

■ Total training time:

Pharaoh : \approx 24 hours Thot : \approx 7 hours

Results on the OpenLab 2006 test-set

System	WER	CER	PER	NIST	BLEU
Pharaoh	42.97	33.96	34.18	8.89	0.41
Thot	41.62	33.55	33.27	8.94	0.42

Results

Och, F. J. (2002).

Statistical Machine Translation: From Single-Word Models to Alignment Templates.

PhD thesis, Computer Science Department, RWTH Aachen, Germany.

