

Improving SMT by Using Multiple Translation Hypotheses

Saša Hasan, Evgeny Matusov, Arne Mauser, David Vilar, Richard Zens, Hermann Ney

TC-STAR OpenLab on Speech Translation Trento, Italy — March 30 - April 1, 2006

Human Language Technology and Pattern Recognition
Lehrstuhl für Informatik VI
Computer Science Department
RWTH Aachen University, Germany

Outline

- 1. Introduction
- 2. Related work
- 3. Rescoring
 - ► Reranking *N*-best lists
 - **▶** Different methods for rescoring
 - **►** Experiments
- 4. System combination
 - **▶** Computing alignments
 - **▶** "Voting" on confusion networks
 - **►** Experiments
- 5. Conclusions

Introduction

- SMT systems (e.g. phrase-based decoders)
 - use a combination of various models during generation
 - > are capable of producing single-best output
 - □ generate word graphs / N-best lists with multiple translation hypotheses
- Observation: all MT systems make errors
- Assumption: different MT systems make different errors (due to utilizing different models / generation strategies / tweaks)
- **▶** Two possibilities for improvement:
 - > rerank multiple translation candidates from a single MT system
 - → Rescoring
 - generate consensus translations from various MT systems
 - → System Combination

Related work

Rescoring

- discriminative and minimum error rate training [Och & Ney 02, Och 03]
- □ b different discriminative reranking techniques [Shen & Sarkar+ 04]
- clustered language models [Hasan & Ney 05]

▶ System combination

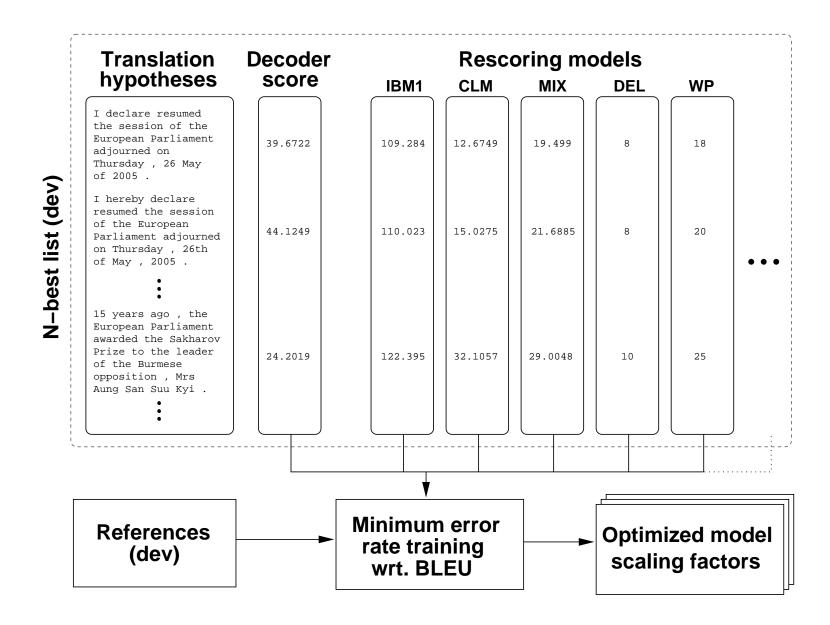
- ▷ successful approaches to system combination in automatic speech recognition (ASR) like ROVER [Fiscus 97]
- ▶ sentence selection algorithms [Nomoto 04, Paul & Doi⁺ 05]
 - o selection of hypotheses based on scores of statistical and other models
 - o approaches require comparable scores
- > algorithms computing consensus translations:
 - o edit distance based alignment, no reordering [Bangalore & Bordel+ 01]
 - heuristic alignment with reordering [Jayaraman & Lavie 05]

Rescoring

Possible SMT system outputs:

- single-best (hypothesis with lowest cost / highest probability)
- word graph (compact representation of search space): only local rescoring techniques are possible
- ightharpoonup N-best list (extract of N best hypotheses): rescoring techniques that consider the whole sentence are possible

Idea of reranking / rescoring:


Reevaluate N-best translation hypotheses of an MT system by adding additional models (features) to the baseline

- ▶ features should be able to distinguish "good" from "bad" translations
- discriminatively rerank the translations in a log-linear combination of all models

Rescoring framework

Rescoring models

- Syntax-based
 - ▶ IBM model 1
 - using grammars (supertagging, link grammar, parsing)
 - ME-based chunking
- ▶ Language-model based
 - ▶ high-order n-grams
 - > sentence-level mixtures
 - **⊳** clustered LMs
- Penalties
 - ▶ IBM1 deletion model
 - > word / sentence-length penalties

Applied in a log-linear framework (feature scores denote costs):

$$\hat{e}(f_1^J; \pmb{\lambda}_1^M) = \operatorname*{argmin}_{e_1^I} \ \left\{ \sum_{m=1}^M \pmb{\lambda}_m h_m(e_1^I, f_1^J)
ight\}$$

Rescoring models – Details

IBM1:

$$h_{\mathsf{IBM1}}(f_1^J, e_1^I) = -\log\left(rac{1}{(I+1)^J}\prod_{j=1}^J\sum_{i=0}^I p(f_j|e_i)
ight)$$

Clustered LMs:

$$h_{ extsf{CLM}}(f_1^J, e_1^I) = -\log\sum_c \left[\mathcal{R}_c(f_1^J, e_1^I) \,
ight] \left(lpha_c p_c(e_1^I) + (1-lpha_c) p_g(e_1^I)
ight)$$

Sentence-level mixtures:

$$h_{\mathsf{SLM}}(e_1^I) = -\log \sum_c \mu_c p_c(e_1^I)$$

IBM1 deletion model:

$$h_{\mathsf{Del}}(f_1^J, e_1^I) = \sum_{j=1}^J \prod_{i=0}^I \left[\, p(f_j | e_i) < au \,
ight]$$

Model scaling factors

Training criteria for the model scaling factors λ_m , $m = \{1, \dots, M\}$:

► Maximum class posterior probability using the GIS algorithm

$$\hat{\lambda}_1^M = rgmax_{\lambda_1^M} \left\{ \sum_{s=1}^S \log p_{\lambda_1^M}(e_s, f_s)
ight\}$$

Minimum error rate training using the Downhill Simplex algorithm

$$\hat{oldsymbol{\lambda}}_1^M = \mathop{
m argmin}_{oldsymbol{\lambda}_1^M} \left\{ \sum_{s=1}^S E(r_s, \hat{e}(f_s; oldsymbol{\lambda}_1^M))
ight\}$$

Rescoring experiments

Spanish-English FTE, $N=10\,000$, optimized wrt. BLEU:

Dev'06	mWER[%]	mPER[%]	BLEU[%]	NIST
Baseline	38.7	27.2	52.0	10.56
+LM	38.6	27.1	52.4	10.59
+IBM	38.5	26.9	52.4	10.62
+IBM+Del	38.5	26.9	52.5	10.62
+IBM+LM	38.3	26.7	52.7	10.67
+IBM+LM+Del	38.2	26.8	52.8	10.67
+IBM+LM+Del+Length	38.2	26.8	52.9	10.66
Oracle (WER, $N=10k$)	27.3	20.1	64.2	11.91

Eval'06 (official results)	mWER[%]	mPER[%]	BLEU[%]	NIST
Baseline	42.7	31.0	46.6	10.29
+IBM+LM+Del+Length	42.3	30.5	47.7	10.44

Rescoring experiments (contd)

Spanish-English Verbatim, $N=10\,000$, optimized wrt. BLEU:

Dev'06	mWER[%]	mPER[%]	BLEU[%]	NIST
Baseline	40.4	28.3	51.0	10.43
+LM	40.3	28.3	51.1	10.43
+IBM	39.9	27.8	51.6	10.52
+IBM+Del	39.9	27.9	51.7	10.54
+IBM+LM	39.7	27.7	51.9	10.58
+IBM+LM+Del	39.8	27.8	51.9	10.56
+IBM+LM+Del+Length	39.7	27.7	52.0	10.57
Oracle (WER, $N=10k$)	28.4	20.8	62.6	11.77

Eval'06 (official results)	mWER[%]	mPER[%]	BLEU[%]	NIST
Baseline	40.6	28.7	50.0	10.80
+IBM+LM+Del+Length	40.4	28.5	50.9	10.92

Rescoring – Conclusion

- Some improvements for Spanish-English (Verbatim, FTE, ASR)
- Only modest results for English-Spanish:

Verbatim: $45.2 \rightarrow 45.4$ BLEU% FTE: $49.1 \rightarrow 49.4$ BLEU%

- **▶** Might be due to more complex morphology of the target language
- ► Experience shows that overfitting occurs when using too many features (i.e. no generalization on the test set)
- Most reliable: IBM model 1
- ► Good combination: IBM model 1 and additional LMs (preferably with larger n-grams than used for generation)
- ightharpoonup Possible problem: lack of diversity in the N-best list (in contrast to system combination)
- ► Higher values for N only slightly decrease oracle ER, but introduce much more "noisy" hypotheses
- Manual comparison: hypotheses frequently differ in synonyms only

System combination

- Consensus translation can be computed by combining outputs of multiple systems
- Idea: select words which are present in the majority of translations ("voting")
- **▶** Generate a possibly new translation
- ➤ To perform the voting correctly, a high-quality alignment of different hypotheses has to be determined
- ► Consider possible reordering of words/phrases

Idea of the algorithm

- ► Align different MT system outputs for each source sentence:
 - > allow word reordering
 - take the context of the whole (test) document of translations into account
 - get a more reliable alignment by using an iterative alignment procedure
- Construct a confusion network from the (possibly reordered) translation hypotheses based on the alignment
- Use global system probabilities and other statistical models to select the best consensus translation from the confusion network

Alignment

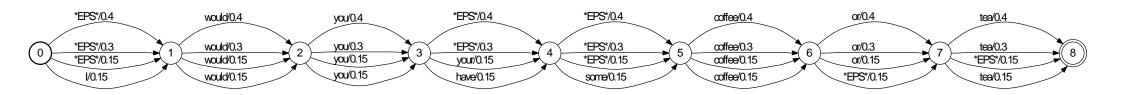
Given a single source language sentence, combine ${\cal M}$ translation hypotheses from ${\cal M}$ translation systems:

- ightharpoonup choose one of the hypotheses E_m as the "primary" hypothesis, assume it to have correct word order
- ▶ align all other hypotheses $E_n(n = 1, ..., M; n \neq m)$ with E_m and reorder the words to match the word order of E_m
- ightharpoonup repeat the procedure M times by letting each hypothesis play the role of the primary hypothesis once

Alignment (contd)

- ► Alignment is performed in analogy to the training procedure in SMT (however, the sentences that have to be aligned are in the same language)
- ► Iterative unsupervised alignment training using the GIZA++ toolkit
- Pairwise alignment of the output of M systems for N test sentences $(N=500\dots 2000)$
- ▶ Total size of the alignment training corpus is $M \cdot (M-1) \cdot N$ sentence pairs
- ▶ 4 iterations of IBM Model 1 and 5 iterations of the HMM model
- ► IBM Model 1 single-word lexicon probabilities are initialized
 - \triangleright with co-occurrence counts of identical words in E_n and E_m
 - > with fractions of a count for words with identical prefixes

Reordering


- lacktriangle Reorder the sentence E_n based on the alignment with the primary hypothesis E_m
- ightharpoonup Use the final HMM alignment that is a function of words in E_n
- ▶ The words of E_n are reordered based on this alignment, such that the final alignment between E_m and E_n becomes monotone
- $lackbox{ to-Overall, determine } M-1 ext{ monotone one-to-one alignments} \ ext{between } E_m ext{ and } E_n ext{ for } n=1,...,M; n
 eq m$
- ► Construct a confusion network from these alignments

Building a confusion network

Example:

Original	 would you like coffee or tea would you have tea or coffee
hypotheses	3. would you like your coffee or4. I have some coffee tea would you like
Alignment and reordering	would would you you have like coffee coffee or or tea tea would would you you like like your \$ coffee coffee or or \$ tea I \$ would would you you like like have \$ some \$ coffee coffee \$ or tea tea
Confusion network	<pre>\$ would you like \$ \$ coffee or tea \$ would you have \$ \$ coffee or tea \$ would you like your \$ coffee or \$ I would you like have some coffee \$ tea</pre>

Extracting Consensus Translations

- ► Introduce global system probabilities
 - ▶ tuned manually based on the performance of the individual systems on a development set
- ▶ Perform "voting" on each of the *M* confusion networks:

$egin{array}{c} 0.25 \\ 0.35 \\ 0.1 \\ \end{array}$	\$ \$ \$	would would	you you	like have like	\$ \$ your	\$ \$ \$	coffee coffee	or or or	tea tea \$
0.3	I	would	you	like	have	some	coffee	\$	tea
Voting	\$/0.7 I/0.3	would/1.0	you/ 1.0	have/0.35 like/0.65	•	\$/ 0.7 some/ 0.3	coffee/1.0	or/0.7 \$/0.3	tea/0.9 \$/0.1

- ▶ Unite M confusion networks into one automaton
- Extract consensus translation using
 - > the single-best path or
 - $\triangleright N$ best paths for further processing (e.g. rescoring)

Translations of European Parliamentary Speeches

TC-STAR 2005 Evaluation, Spanish-English verbatim condition (case-insensitive evaluation, no punctuation):

EPPS	WER	PER	BLEU
Spanish-English	[%]	[%]	[%]
worst single system	49.1	38.2	39.6
best single system	41.0	30.2	47.7
consensus of 4 systems	39.1	29.1	49.3
+ rescoring	38.8	29.0	50.7

TC-STAR 2006 Evaluation, English-Spanish verbatim condition (case-sensitive evaluation with punctuation):

EPPS	WER	PER	BLEU
English-Spanish	[%]	[%]	[%]
worst single system	47.6	36.1	40.1
best single system	43.1	32.1	45.4
consensus of 5 systems	40.9	30.4	47.5

System combination – Conclusion

- Novel algorithm for computing consensus translations from the output of multiple MT systems
- ► The approach aligns the alternative translation hypotheses, allowing for word reordering
- ► The decision on how to align two translations of a sentence takes the whole document of translations into account
- Large and significant gains in translation quality obtained on different tasks and conditions
- ▶ Best translations in the TC-STAR 2006 MT evaluation according to all objective error measures
- ► The method can be applied when translating automatically transcribed speech to reduce the negative impact of speech recognition errors on translation accuracy

Conclusions

- ► Two approaches using multiple hypotheses for improving MT:
 - \triangleright Rescoring: use N-best translations and apply reranking
 - System combination: compute consensus translations from different MT systems
- ► Some improvements for rescoring on EPPS task
- **▶** Good improvements for system combination:
 - → diversity of the various translations seems to be important
- Advantages of rescoring:
 - ▶ test new models easily (direct integration in the search process might be complicated and time-consuming)
 - ▶ apply models on the whole sentence level (structural properties, long-distance dependencies, grammar-based approaches)
- ightharpoonup Methods can be combined: reranking an N-best list generated from a combination of systems yields additional improvements

Thank you for your attention

Saša Hasan

hasan@informatik.rwth-aachen.de

http://www-i6.informatik.rwth-aachen.de/

References

- [Bangalore & Bordel⁺ 01] S. Bangalore, G. Bordel, G. Riccardi: Computing Consensus Translation from Multiple Machine Translation Systems. In *IEEE Workshop on Automatic Speech Recognition and Understanding*, Madonna di Campiglio, Italy, 2001. 4
- [Fiscus 97] J.G. Fiscus: A Post-Processing System to Yield Reduced Word Error Rates: Recogniser Output Voting Error Reduction (ROVER). In *Proc. IEEE Workshop on Automatic Speech Recognition and Understanding*, pp. 347–352, Santa Barbara, CA, 1997. 4
- [Hasan & Bender⁺ 06] S. Hasan, O. Bender, H. Ney: Reranking Translation Hypotheses Using Structural Properties. In *EACL06 Workshop on Learning Structured Information in Natural Language Applications*, Trento, Italy, 2006. To appear. 4
- [Hasan & Ney 05] S. Hasan, H. Ney: Clustered Language Models based on Regular Expressions for SMT. In *Proc. of the 10th Annual Conf. of the European Association for Machine Translation (EAMT)*, Budapest, Hungary, May 2005. 4
- [Jayaraman & Lavie 05] S. Jayaraman, A. Lavie: Multi-Engine Machine Translation Guided by Explicit Word Matching. In *Proc. of the 10th Annual Conf. of the European Association for Machine Translation (EAMT)*, pp. 143–152, Budapest, Hungary, May 2005. 4
- [Nomoto 04] T. Nomoto: Multi-Engine Machine Translation with Voted Language Model. In *Proc. of the 42nd Annual Meeting of the Association for Computational Linguistics (ACL)*, Barcelona, Spain, July 2004. 4

- [Och 03] F.J. Och: Minimum Error Rate Training in Statistical Machine Translation. In *Proc. of the 41st Annual Meeting of the Association for Computational Linguistics (ACL)*, pp. 160–167, Sapporo, Japan, July 2003. 4
- [Och & Gildea⁺ 04] F.J. Och, D. Gildea, S. Khudanpur, A. Sarkar, K. Yamada, A. Fraser, S. Kumar, L. Shen, D. Smith, K. Eng, V. Jain, Z. Jin, D. Radev: A Smorgasbord of Features for Statistical Machine Translation. In *Proc. 2004 Meeting of the North American chapter of the Association for Computational Linguistics (HLT-NAACL)*, pp. 161–168, Boston, MA, 2004. 4
- [Och & Ney 02] F.J. Och, H. Ney: Discriminative Training and Maximum Entropy Models for Statistical Machine Translation. In *Proc. of the 40th Annual Meeting of the Association for Computational Linguistics (ACL)*, pp. 295–302, Philadelphia, PA, July 2002. 4
- [Paul & Doi⁺ 05] M. Paul, T. Doi, Y. Hwang, K. Imamura, H. Okuma, E. Sumita: Nobody is Perfect: ATR's Hybrid Approach to Spoken Language Translation. In *International Workshop on Spoken Language Translation*, pp. 55–62, Pittsburgh, PA, 2005. 4
- [Shen & Sarkar⁺ 04] L. Shen, A. Sarkar, F.J. Och: Dicriminative Reranking for Machine Translation. In *Proc. of the Human Language Technology Conf. (HLT-NAACL)*, Boston, MA, May 2004.

Corpus statistics

		Spanish	English	
Train	Sentences	1 167 627		
	Words + Punct. Marks	35 320 646	33 945 468	
	Words	32 074 034	30 821 291	
	Vocabulary	159 080	110 636	
	Singletons	63 045	46 121	
Dev	Sentences	1 452	1122	
	Words + Punct. Marks	52 087	28 348	
	Words	46 816	25 885	
	Distinct Words	7 013	4 162	
	OOV Words	351	93	
Test	Sentences	1 782	1117	
	Words + Punct. Marks	56 468	28 492	
	Words	50 634	25 869	
	Distinct Words	7 204	4 172	
	OOV Words	363	72	

Translation examples – Effect of rescoring

Baseline	has been distributed the final draft of the agenda of the plenary in June
Rescoring	It has been distributed to the final draft of the agenda of the plenary in June
Reference	The final project for the agenda of the plenary session of June was distributed
Baseline	, we are receiving very worrying news .
Rescoring	, we are receiving very disturbing reports.
Reference	, we are receiving very distressing news.
Baseline	We are facing a crisis whose emergence can not be seen, that some have referred
	of genocide, and which has caused, in any case, thousands of people dead
Rescoring	We are facing a crisis whose emergence can not be seen, some have referred to
	as genocide, and which has caused, in any case, thousands of deaths
Reference	We are facing a crisis, the exit of which is hard to see, which some branded as
	genocide, and which, in any case, caused thousands of dead
Baseline	This proposal, for the first time, the co-financing of projects in the field of energy
	and not only the prior studies.
Rescoring	This proposal envisages , for the first time, the co-financing of projects in the field
	of energy and not only the prior studies.
Reference	Said proposal contemplates, for the first time, the co-financing of projects in the
	energy sector, and not only the preliminary surveys.

Synonyms encountered (baseline / rescoring): in this area / in this field, trust in / rely on, intolerable / inadmissible, ability / skill, appeared / emerged, jointly with / together in, . . .

Translation examples – System combination

Best system	I also authorised to committees to certain reports
Consensus	I also authorised to certain committees to draw up reports
Reference	I have also authorised certain committees to prepare reports
Best system	human rights which therefore has fought the european union
Consensus	human rights which the european union has fought
Reference	human rights for which the european union has fought so hard
Best system	we of the following the agenda
Consensus	moving on to the next point on the agenda
Reference	we go on to the next point of the agenda