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Introduction

I SMT systems (e.g. phrase-based decoders)

. use a combination of various models during generation

. are capable of producing single-best output

. generate word graphs / N -best lists with multiple
translation hypotheses

I Observation: all MT systems make errors

I Assumption: different MT systems make different errors
(due to utilizing different models / generation strategies / tweaks)

I Two possibilities for improvement:

. rerank multiple translation candidates from a single MT system
→ Rescoring

. generate consensus translations from various MT systems
→ System Combination
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Related work

I Rescoring

. discriminative and minimum error rate training [ Och & Ney 02 , Och 03]

. different discriminative reranking techniques [ Shen & Sarkar + 04]

. syntactical features for rescoring [ Och & Gildea + 04, Hasan & Bender + 06]

. clustered language models [ Hasan & Ney 05 ]

I System combination

. successful approaches to system combination in automatic
speech recognition (ASR) like ROVER [ Fiscus 97 ]

. sentence selection algorithms [ Nomoto 04 , Paul & Doi + 05]
◦ selection of hypotheses based on scores of statistical and other models
◦ approaches require comparable scores

. algorithms computing consensus translations:
◦ edit distance based alignment, no reordering [ Bangalore & Bordel + 01]
◦ heuristic alignment with reordering [ Jayaraman & Lavie 05 ]
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Rescoring

Possible SMT system outputs:

I single-best (hypothesis with lowest cost / highest probability)

I word graph (compact representation of search space):
only local rescoring techniques are possible

I N -best list (extract of N best hypotheses):
rescoring techniques that consider the whole sentence are possible

Idea of reranking / rescoring:

Reevaluate N -best translation hypotheses of an MT system
by adding additional models (features) to the baseline

I features should be able to distinguish “good” from “bad” translations

I discriminatively rerank the translations in a log-linear
combination of all models
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Rescoring framework
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Rescoring models

I Syntax-based

. IBM model 1

. using grammars (supertagging, link grammar, parsing)

. ME-based chunking

I Language-model based

. high-order n-grams

. sentence-level mixtures

. clustered LMs

I Penalties

. IBM1 deletion model

. word / sentence-length penalties

Applied in a log-linear framework (feature scores denote costs):

ê(fJ
1 ; λM

1 ) = argmin
eI
1

{
M∑

m=1

λmhm(eI
1, fJ

1 )

}
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Rescoring models – Details

IBM1:
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Sentence-level mixtures:
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IBM1 deletion model:
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Model scaling factors

Training criteria for the model scaling factors λm, m = {1, . . . , M}:

I Maximum class posterior probability using the GIS algorithm

λ̂M
1 = argmax

λM
1

{
S∑

s=1

log pλM
1

(es, fs)

}

I Minimum error rate training using the Downhill Simplex algorithm

λ̂M
1 = argmin

λM
1

{
S∑

s=1

E(rs, ê(fs; λ
M
1 ))

}
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Rescoring experiments

Spanish-English FTE, N = 10 000, optimized wrt. BLEU:

Dev’06 mWER[%] mPER[%] BLEU[%] NIST
Baseline 38.7 27.2 52.0 10.56
+LM 38.6 27.1 52.4 10.59
+IBM 38.5 26.9 52.4 10.62
+IBM+Del 38.5 26.9 52.5 10.62
+IBM+LM 38.3 26.7 52.7 10.67
+IBM+LM+Del 38.2 26.8 52.8 10.67
+IBM+LM+Del+Length 38.2 26.8 52.9 10.66
Oracle (WER, N = 10k) 27.3 20.1 64.2 11.91

Eval’06 (official results) mWER[%] mPER[%] BLEU[%] NIST
Baseline 42.7 31.0 46.6 10.29
+IBM+LM+Del+Length 42.3 30.5 47.7 10.44

S. Hasan: Multiple Translation Hypotheses 10 / 23 TC-STAR OpenLab: March 30 - April 1, 2006

http://www.rwth-aachen.de/
http://www-i6.informatik.rwth-aachen.de/


Rescoring experiments (contd)

Spanish-English Verbatim, N = 10 000, optimized wrt. BLEU:

Dev’06 mWER[%] mPER[%] BLEU[%] NIST
Baseline 40.4 28.3 51.0 10.43
+LM 40.3 28.3 51.1 10.43
+IBM 39.9 27.8 51.6 10.52
+IBM+Del 39.9 27.9 51.7 10.54
+IBM+LM 39.7 27.7 51.9 10.58
+IBM+LM+Del 39.8 27.8 51.9 10.56
+IBM+LM+Del+Length 39.7 27.7 52.0 10.57
Oracle (WER, N = 10k) 28.4 20.8 62.6 11.77

Eval’06 (official results) mWER[%] mPER[%] BLEU[%] NIST
Baseline 40.6 28.7 50.0 10.80
+IBM+LM+Del+Length 40.4 28.5 50.9 10.92
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Rescoring – Conclusion

I Some improvements for Spanish-English (Verbatim, FTE, ASR)

I Only modest results for English-Spanish:

Verbatim: 45.2 → 45.4 BLEU%
FTE: 49.1 → 49.4 BLEU%

. Might be due to more complex morphology of the target language

I Experience shows that overfitting occurs when using too many features
(i.e. no generalization on the test set)

I Most reliable: IBM model 1

I Good combination: IBM model 1 and additional LMs
(preferably with larger n-grams than used for generation)

I Possible problem: lack of diversity in the N -best list
(in contrast to system combination)

I Higher values for N only slightly decrease oracle ER,
but introduce much more “noisy” hypotheses

I Manual comparison: hypotheses frequently differ in synonyms only
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System combination

I Consensus translation can be computed by combining outputs of
multiple systems

I Idea: select words which are present in the majority of
translations (“voting”)

I Generate a possibly new translation

I To perform the voting correctly, a high-quality alignment of
different hypotheses has to be determined

I Consider possible reordering of words/phrases
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Idea of the algorithm

I Align different MT system outputs for each source sentence:

. allow word reordering

. take the context of the whole (test) document of
translations into account

. get a more reliable alignment by using an iterative
alignment procedure

I Construct a confusion network from the (possibly reordered)
translation hypotheses based on the alignment

I Use global system probabilities and other statistical models
to select the best consensus translation from the confusion network
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Alignment

Given a single source language sentence, combine M translation hypotheses
from M translation systems:

I choose one of the hypotheses Em as the “primary” hypothesis,
assume it to have correct word order

I align all other hypotheses En(n = 1, ..., M ; n 6= m) with Em

and reorder the words to match the word order of Em

I repeat the procedure M times by letting each hypothesis
play the role of the primary hypothesis once
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Alignment (contd)

I Alignment is performed in analogy to the training procedure in SMT
(however, the sentences that have to be aligned are in the same language)

I Iterative unsupervised alignment training using the GIZA ++ toolkit

I Pairwise alignment of the output of M systems for N test sentences
(N = 500 . . . 2000)

I Total size of the alignment training corpus is
M · (M − 1) · N sentence pairs

I 4 iterations of IBM Model 1 and 5 iterations of the HMM model

I IBM Model 1 single-word lexicon probabilities are initialized

. with co-occurrence counts of identical words in En and Em

. with fractions of a count for words with identical prefixes
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Reordering

I Reorder the sentence En based on the alignment
with the primary hypothesis Em

I Use the final HMM alignment that is a function of words in En

I The words of En are reordered based on this alignment,
such that the final alignment between Em and En

becomes monotone

I Overall, determine M − 1 monotone one-to-one alignments
between Em and En for n = 1, ..., M ; n 6= m

I Construct a confusion network from these alignments
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Building a confusion network

Example:

1. would you like coffee or tea
Original 2. would you have tea or coffee
hypotheses 3. would you like your coffee or

4. I have some coffee tea would you like
Alignment would |would you |you have |like coffee |coffee or |or tea|tea
and would |would you |you like |like your |$ coffee |coffee or |or $|tea
reordering I|$ would |would you |you like |like have |$ some |$ coffee |coffee $|or tea|tea

$ would you like $ $ coffee or tea
Confusion $ would you have $ $ coffee or tea
network $ would you like your $ coffee or $

I would you like have some coffee $ tea

0 1

*EPS*/0.4

*EPS*/0.3
*EPS*/0.15

I/0.15

2

would/0.4

would/0.3
would/0.15

would/0.15

3

you/0.4

you/0.3
you/0.15
you/0.15

4

*EPS*/0.4

*EPS*/0.3
your/0.15

have/0.15

5

*EPS*/0.4

*EPS*/0.3
*EPS*/0.15

some/0.15

6

coffee/0.4

coffee/0.3
coffee/0.15

coffee/0.15

7

or/0.4

or/0.3
or/0.15

*EPS*/0.15

8

tea/0.4

tea/0.3
*EPS*/0.15

tea/0.15
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Extracting Consensus Translations

I Introduce global system probabilities

. tuned manually based on the performance of the
individual systems on a development set

I Perform “voting” on each of the M confusion networks:

0.25 $ would you like $ $ coffee or tea
0.35 $ would you have $ $ coffee or tea
0.1 $ would you like your $ coffee or $
0.3 I would you like have some coffee $ tea

Voting $/0.7 would /1.0 you /1.0 have/0.35 $/0.6 $/0.7 coffee /1.0 or /0.7 tea/0.9

I/0.3 like /0.65 your/ 0.1 some/ 0.3 $/0.3 $/0.1

have/0.3

I Unite M confusion networks into one automaton

I Extract consensus translation using

. the single-best path or

. N best paths for further processing (e.g. rescoring)
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Translations of European Parliamentary Speeches

TC-STAR 2005 Evaluation, Spanish-English verbatim condition
(case-insensitive evaluation, no punctuation):

EPPS WER PER BLEU

Spanish-English [%] [%] [%]
worst single system 49.1 38.2 39.6
best single system 41.0 30.2 47.7
consensus of 4 systems 39.1 29.1 49.3
+ rescoring 38.8 29.0 50.7

TC-STAR 2006 Evaluation, English-Spanish verbatim condition
(case-sensitive evaluation with punctuation):

EPPS WER PER BLEU

English-Spanish [%] [%] [%]
worst single system 47.6 36.1 40.1
best single system 43.1 32.1 45.4
consensus of 5 systems 40.9 30.4 47.5
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System combination – Conclusion

I Novel algorithm for computing consensus translations
from the output of multiple MT systems

I The approach aligns the alternative translation hypotheses,
allowing for word reordering

I The decision on how to align two translations of a sentence
takes the whole document of translations into account

I Large and significant gains in translation quality obtained
on different tasks and conditions

I Best translations in the TC-STAR 2006 MT evaluation
according to all objective error measures

I The method can be applied when translating automatically
transcribed speech to reduce the negative impact of speech
recognition errors on translation accuracy

S. Hasan: Multiple Translation Hypotheses 21 / 23 TC-STAR OpenLab: March 30 - April 1, 2006

http://www.rwth-aachen.de/
http://www-i6.informatik.rwth-aachen.de/


Conclusions

I Two approaches using multiple hypotheses for improving MT:

. Rescoring: use N -best translations and apply reranking

. System combination: compute consensus translations
from different MT systems

I Some improvements for rescoring on EPPS task

I Good improvements for system combination:
→ diversity of the various translations seems to be important

I Advantages of rescoring:

. test new models easily (direct integration in the search
process might be complicated and time-consuming)

. apply models on the whole sentence level (structural properties,
long-distance dependencies, grammar-based approaches)

I Methods can be combined: reranking an N -best list generated from
a combination of systems yields additional improvements
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Thank you for your attention

Saša Hasan

hasan@informatik.rwth-aachen.de

http://www-i6.informatik.rwth-aachen.de/
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Corpus statistics

Spanish English
Train Sentences 1 167 627

Words + Punct. Marks 35 320 646 33 945 468
Words 32 074 034 30 821 291

Vocabulary 159 080 110 636
Singletons 63 045 46 121

Dev Sentences 1 452 1 122
Words + Punct. Marks 52 087 28 348

Words 46 816 25 885
Distinct Words 7 013 4 162

OOV Words 351 93
Test Sentences 1 782 1 117

Words + Punct. Marks 56 468 28 492
Words 50 634 25 869

Distinct Words 7 204 4 172
OOV Words 363 72
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Translation examples – Effect of rescoring

Baseline has been distributed the final draft of the agenda of the plenary in June . . .

Rescoring It has been distributed to the final draft of the agenda of the plenary in June . . .

Reference The final project for the agenda of the plenary session of June was distributed . . .

Baseline . . ., we are receiving very worrying news .
Rescoring . . ., we are receiving very disturbing reports .
Reference . . ., we are receiving very distressing news .
Baseline We are facing a crisis whose emergence can not be seen, that some have referred

of genocide, and which has caused, in any case, thousands of people dead . . .

Rescoring We are facing a crisis whose emergence can not be seen, some have referred to
as genocide, and which has caused, in any case, thousands of deaths . . .

Reference We are facing a crisis, the exit of which is hard to see, which some branded as
genocide, and which, in any case, caused thousands of dead . . .

Baseline This proposal, for the first time, the co-financing of projects in the field of energy
and not only the prior studies.

Rescoring This proposal envisages , for the first time, the co-financing of projects in the field
of energy and not only the prior studies.

Reference Said proposal contemplates, for the first time, the co-financing of projects in the
energy sector, and not only the preliminary surveys.

Synonyms encountered (baseline / rescoring): in this area / in this field , trust in / rely on , intol-
erable / inadmissible , ability / skill , appeared / emerged , jointly with / together in , . . .
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Translation examples – System combination

Best system I also authorised to committees to certain reports
Consensus I also authorised to certain committees to draw up reports
Reference I have also authorised certain committees to prepare reports
Best system human rights which therefore has fought the european union
Consensus human rights which the european union has fought
Reference human rights for which the european union has fought so hard
Best system we of the following the agenda
Consensus moving on to the next point on the agenda
Reference we go on to the next point of the agenda
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