

A New SLT Decoder based on Confusion Networks

Nicola Bertoldi and Marcello Federico

ITC-irst - Centro per la Ricerca Scientifica e Tecnologica I-38050 Povo (Trento), Italy

{bertoldi,federico}@itc.it

• Spoken Language Translation

- Spoken Language Translation
- Approaches

- Spoken Language Translation
- Approaches
- Confusion Network (CN)

- Spoken Language Translation
- Approaches
- Confusion Network (CN)
- CN-based Translation Model

- Spoken Language Translation
- Approaches
- Confusion Network (CN)
- CN-based Translation Model
- CN-based Decoder

- Spoken Language Translation
- Approaches
- Confusion Network (CN)
- CN-based Translation Model
- CN-based Decoder
- Evaluation

- Translation of speech input
 - spontaneous speech phenomena:
 repetitions, hesitations
 - recognition errors:
 - syntax, meaning

- 42 • Translation of speech input 41.5 - spontaneous speech phenomena: 41 BLEU SCORE 40.5 repetitions, hesitations 40 - recognition errors: 39.5 syntax, meaning 39 38.5 15 17 18 19 14 16
- Automatic Speech Recognition and Machine Translation
 - strong correlation between recognition and translation quality
 - ASR WER decreases in a set of hypotheses

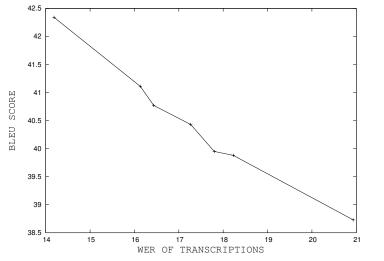
42.5

20

WER OF TRANSCRIPTIONS

21

- Translation of speech input
 - spontaneous speech phenomena:
 repetitions, hesitations
 - recognition errors:
 syntax, meaning



- Automatic Speech Recognition and Machine Translation
 - strong correlation between recognition and translation quality
 - ASR WER decreases in a set of hypotheses
 - idea: exploitation of more transcriptions

Given a speech input o in the source language, and the set $\mathcal{F}(o)$ of its possible transcriptions, find the best translation through the following approximate criterion:

 $\mathbf{e}^* = \arg\max_{\mathbf{e}} \Pr(\mathbf{e} \mid \mathbf{o}) \approx \arg\max_{\mathbf{e}} \max_{\mathbf{f} \in \mathcal{F}(\mathbf{o})} \Pr(\mathbf{e}, \mathbf{f} \mid \mathbf{o})$

Given a speech input o in the source language, and the set $\mathcal{F}(o)$ of its possible transcriptions, find the best translation through the following approximate criterion:

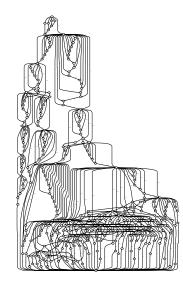
$$\mathbf{e}^* = \arg\max_{\mathbf{e}} \Pr(\mathbf{e} \mid \mathbf{o}) \approx \arg\max_{\mathbf{e}} \max_{\mathbf{f} \in \mathcal{F}(\mathbf{o})} \Pr(\mathbf{e}, \mathbf{f} \mid \mathbf{o})$$

- $\Pr(\mathbf{e}, \mathbf{f} \mid \mathbf{o})$ speech translation model
 - acoustic and translation features

Given a speech input o in the source language, and the set $\mathcal{F}(o)$ of its possible transcriptions, find the best translation through the following approximate criterion:

$$\mathbf{e}^* = \arg \max_{\mathbf{e}} \Pr(\mathbf{e} \mid \mathbf{o}) \approx \arg \max_{\mathbf{e}} \max_{\mathbf{f} \in \mathcal{F}(\mathbf{o})} \Pr(\mathbf{e}, \mathbf{f} \mid \mathbf{o})$$

- $\bullet \ \Pr(\mathbf{e}, \mathbf{f} \mid \mathbf{o})$ speech translation model
 - acoustic and translation features
- $\mathcal{F}(\mathbf{o})$ is an ASR word graph (WG):
 - huge amount of transcription hypotheses
 - complex structure

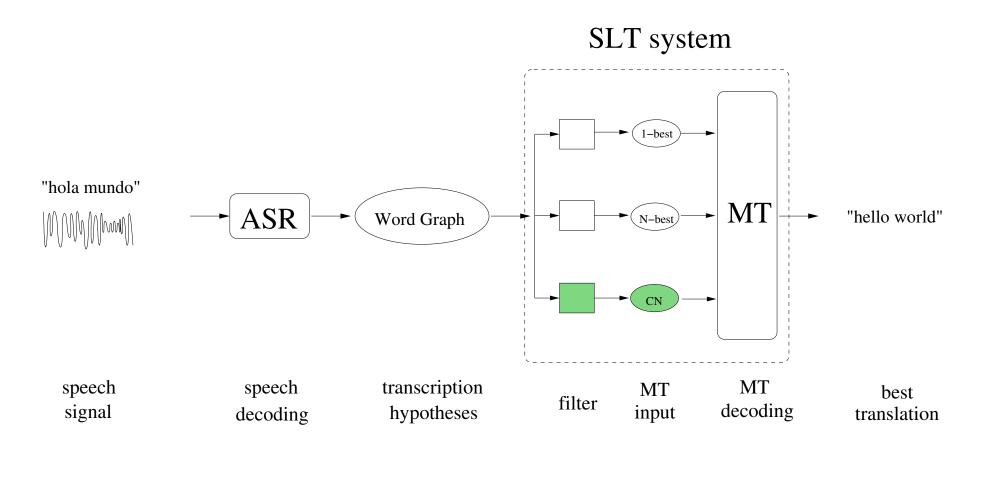


• 1-best Decoder: a text MT system only translates the best transcription of the ASR. No use of multiple transcriptions.

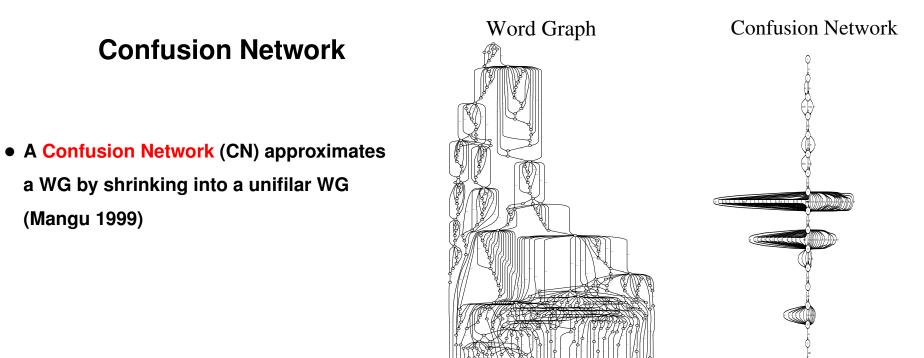
- 1-best Decoder: a text MT system only translates the best transcription of the ASR. No use of multiple transcriptions.
- N-best Decoder: N hypotheses are translated by a text MT decoder and reranked according to ASR scores, e.g. of acoustic and source language models. It does not advantage from overlaps among N-best.

- 1-best Decoder: a text MT system only translates the best transcription of the ASR. No use of multiple transcriptions.
- N-best Decoder: N hypotheses are translated by a text MT decoder and reranked according to ASR scores, e.g. of acoustic and source language models. It does not advantage from overlaps among N-best.
- Finite State Transducer: both ASR and MT models are merged into one finite-state network and a transducer decodes the input speech signal in one shot. Difficult scaling up to large domains.

- 1-best Decoder: a text MT system only translates the best transcription of the ASR. No use of multiple transcriptions.
- N-best Decoder: N hypotheses are translated by a text MT decoder and reranked according to ASR scores, e.g. of acoustic and source language models. It does not advantage from overlaps among N-best.
- Finite State Transducer: both ASR and MT models are merged into one finite-state network and a transducer decodes the input speech signal in one shot. Difficult scaling up to large domains.
- Confusion Network Decoder: an approximate WG is extracted from the ASR output and is directly translated. It exploits overlaps among hypotheses.

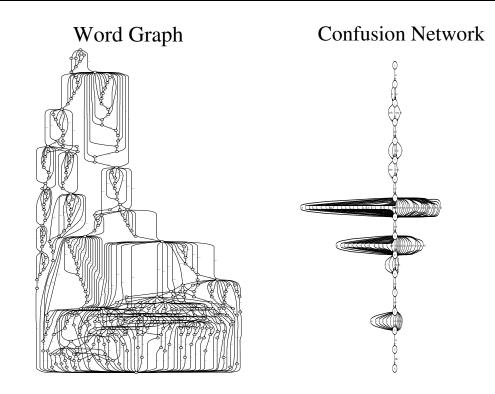


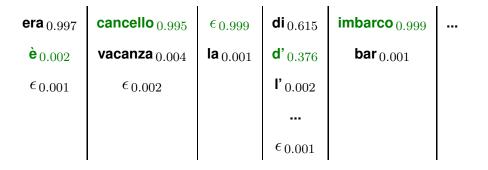
Confusion Network



Confusion Network

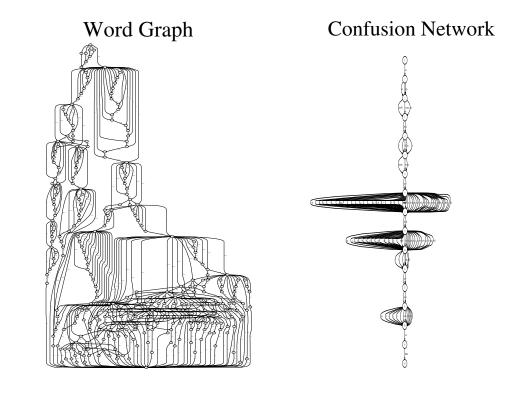
- A Confusion Network (CN) approximates a WG by shrinking into a unifilar WG (Mangu 1999)
- Representation through a compact table





Confusion Network

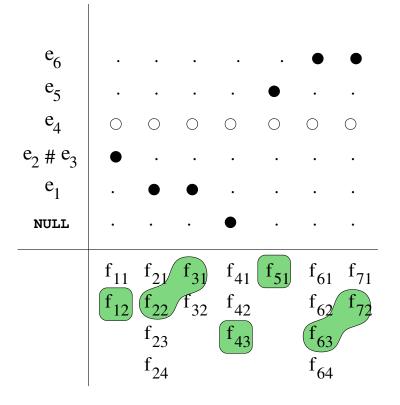
- A Confusion Network (CN) approximates a WG by shrinking into a unifilar WG (Mangu 1999)
- Representation through a compact table
- Each path corresponds to a hypothesis
- CN contains more paths than WG
- Possible insertion of ϵ words
- Posterior probs for single words
- Likelihood for each hypothesis



era 0.997	cancello $_{0.995}$	$\epsilon_{0.999}$	$\operatorname{di}_{0.615}$	imbarco $_{0.999}$	
è 0.002	vacanza $_{0.004}$	$\mathbf{la}_{0.001}$	d' $_{0.376}$	$bar_{0.001}$	
$\epsilon_{0.001}$	$\epsilon_{0.002}$		ľ _{0.002}		
			$\epsilon_{0.001}$		

• Phrase: sequence of consecutive words

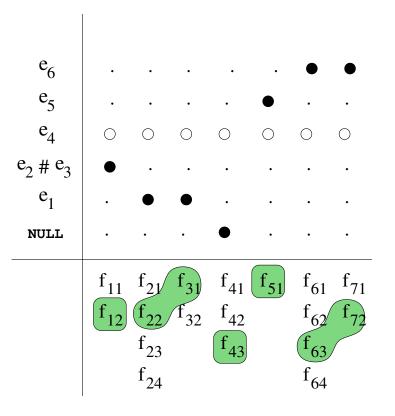
- Phrase: sequence of consecutive words
- Alignment: map between CN and target phrases one word per column aligned with a target phrase



- Phrase: sequence of consecutive words
- Alignment: map between CN and target phrases one word per column aligned with a target phrase

• Search criterion:

 $\tilde{\mathbf{e}}^* \approx \arg\max_{\tilde{\mathbf{e}}} \max_{\mathbf{a} \in \mathcal{A}(\mathcal{G}, \tilde{\mathbf{e}})} \Pr(\tilde{\mathbf{e}}, \mathbf{a} \mid \mathcal{G})$

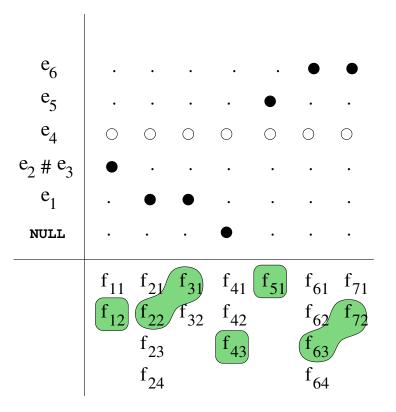


- Phrase: sequence of consecutive words
- Alignment: map between CN and target phrases one word per column aligned with a target phrase

• Search criterion:

 $\tilde{\mathbf{e}}^* \approx \arg \max_{\tilde{\mathbf{e}}} \max_{\mathbf{a} \in \mathcal{A}(\mathcal{G}, \tilde{\mathbf{e}})} \Pr(\tilde{\mathbf{e}}, \mathbf{a} \mid \mathcal{G})$

• $\Pr(\mathbf{\tilde{e}}, \mathbf{a} \mid \mathcal{G})$ is a log-linear phrase-based model



The conditional distribution $Pr(\mathbf{\tilde{e}}, \mathbf{a} \mid \mathcal{G})$ is determined through suitable real valued feature functions $h_r(\mathbf{\tilde{e}}, \mathbf{a} \mid \mathcal{G}), r = 1 \dots R$, and takes the parametric form:

$$p_{\lambda}(\tilde{\mathbf{e}}, \mathbf{a} \mid \mathcal{G}) \propto \exp\left\{\sum_{r=1}^{R} \lambda_r h_r(\tilde{\mathbf{e}}, \mathbf{a} \mid \mathcal{G})\right\}$$
 (1)

The conditional distribution $Pr(\mathbf{\tilde{e}}, \mathbf{a} \mid \mathcal{G})$ is determined through suitable real valued feature functions $h_r(\mathbf{\tilde{e}}, \mathbf{a} \mid \mathcal{G}), r = 1 \dots R$, and takes the parametric form:

$$p_{\lambda}(\mathbf{\tilde{e}}, \mathbf{a} \mid \mathcal{G}) \propto \exp\left\{\sum_{r=1}^{R} \lambda_r h_r(\mathbf{\tilde{e}}, \mathbf{a} \mid \mathcal{G})\right\}$$
 (1)

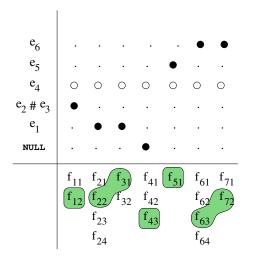
Feature Functions:

The conditional distribution $Pr(\tilde{\mathbf{e}}, \mathbf{a} \mid \mathcal{G})$ is determined through suitable real valued feature functions $h_r(\tilde{\mathbf{e}}, \mathbf{a} \mid \mathcal{G}), r = 1 \dots R$, and takes the parametric form:

$$p_{\lambda}(\mathbf{\tilde{e}}, \mathbf{a} \mid \mathcal{G}) \propto \exp\left\{\sum_{r=1}^{R} \lambda_r h_r(\mathbf{\tilde{e}}, \mathbf{a} \mid \mathcal{G})\right\}$$
 (1)

Feature Functions:

• Language model: 3-gram LM



The conditional distribution $Pr(\tilde{\mathbf{e}}, \mathbf{a} \mid \mathcal{G})$ is determined through suitable real valued feature functions $h_r(\tilde{\mathbf{e}}, \mathbf{a} \mid \mathcal{G}), r = 1 \dots R$, and takes the parametric form:

$$p_{\lambda}(\tilde{\mathbf{e}}, \mathbf{a} \mid \mathcal{G}) \propto \exp\left\{\sum_{r=1}^{R} \lambda_r h_r(\tilde{\mathbf{e}}, \mathbf{a} \mid \mathcal{G})\right\}$$
 (1)

Feature Functions:

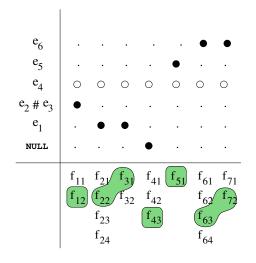
- Language model: 3-gram LM
- Fertility models: for target phrases and NULL word

e ₆			•			•	•
e ₅			•		•	•	
e ₄	0	0	0	0	0	0	0
$e_2 \# e_3$	•					•	
e ₁		•	•			•	•
NULL			•	•	•	•	•
	f ₁₁ f ₁₂	f_{21} f_{22} f_{23} f_{24}	f ₃₁ f ₃₂	f ₄₁ f ₄₂ f ₄₃		f_{61} f_{62} f_{63} f_{64}	f ₇₁

The conditional distribution $Pr(\mathbf{\tilde{e}}, \mathbf{a} \mid \mathcal{G})$ is determined through suitable real valued feature functions $h_r(\mathbf{\tilde{e}}, \mathbf{a} \mid \mathcal{G}), r = 1 \dots R$, and takes the parametric form:

$$p_{\lambda}(\tilde{\mathbf{e}}, \mathbf{a} \mid \mathcal{G}) \propto \exp\left\{\sum_{r=1}^{R} \lambda_r h_r(\tilde{\mathbf{e}}, \mathbf{a} \mid \mathcal{G})\right\}$$
 (1)

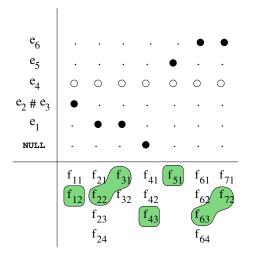
- Language model: 3-gram LM
- Fertility models: for target phrases and NULL word
- Distortion models: reordering of phrases and NULL word



The conditional distribution $Pr(\tilde{\mathbf{e}}, \mathbf{a} \mid \mathcal{G})$ is determined through suitable real valued feature functions $h_r(\tilde{\mathbf{e}}, \mathbf{a} \mid \mathcal{G}), r = 1 \dots R$, and takes the parametric form:

$$p_{\lambda}(\tilde{\mathbf{e}}, \mathbf{a} \mid \mathcal{G}) \propto \exp\left\{\sum_{r=1}^{R} \lambda_r h_r(\tilde{\mathbf{e}}, \mathbf{a} \mid \mathcal{G})\right\}$$
 (1)

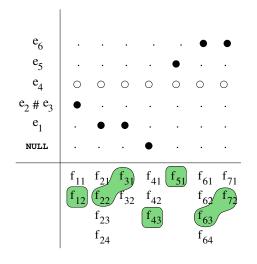
- Language model: 3-gram LM
- Fertility models: for target phrases and NULL word
- Distortion models: reordering of phrases and NULL word
- Lexicon models: phrase-based



The conditional distribution $Pr(\tilde{\mathbf{e}}, \mathbf{a} \mid \mathcal{G})$ is determined through suitable real valued feature functions $h_r(\tilde{\mathbf{e}}, \mathbf{a} \mid \mathcal{G}), r = 1 \dots R$, and takes the parametric form:

$$p_{\lambda}(\tilde{\mathbf{e}}, \mathbf{a} \mid \mathcal{G}) \propto \exp\left\{\sum_{r=1}^{R} \lambda_r h_r(\tilde{\mathbf{e}}, \mathbf{a} \mid \mathcal{G})\right\}$$
 (1)

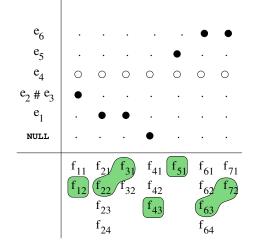
- Language model: 3-gram LM
- Fertility models: for target phrases and NULL word
- Distortion models: reordering of phrases and NULL word
- Lexicon models: phrase-based
- $\bullet\,$ Likelihood of the path within ${\cal G}$



The conditional distribution $Pr(\tilde{\mathbf{e}}, \mathbf{a} \mid \mathcal{G})$ is determined through suitable real valued feature functions $h_r(\tilde{\mathbf{e}}, \mathbf{a} \mid \mathcal{G}), r = 1 \dots R$, and takes the parametric form:

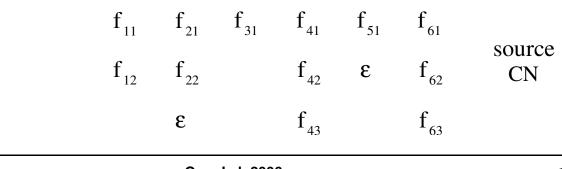
$$p_{\lambda}(\tilde{\mathbf{e}}, \mathbf{a} \mid \mathcal{G}) \propto \exp\left\{\sum_{r=1}^{R} \lambda_r h_r(\tilde{\mathbf{e}}, \mathbf{a} \mid \mathcal{G})\right\}$$
 (1)

- Language model: 3-gram LM
- Fertility models: for target phrases and NULL word
- Distortion models: reordering of phrases and NULL word
- Lexicon models: phrase-based
- $\bullet\,$ Likelihood of the path within ${\cal G}$
- True length of the path disregarding $\epsilon\text{-words}$



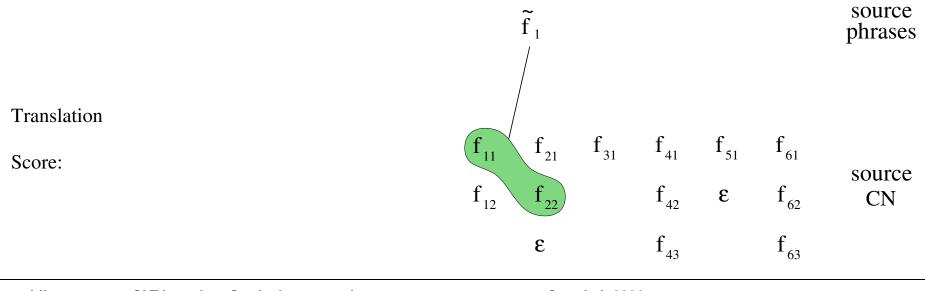
Translation

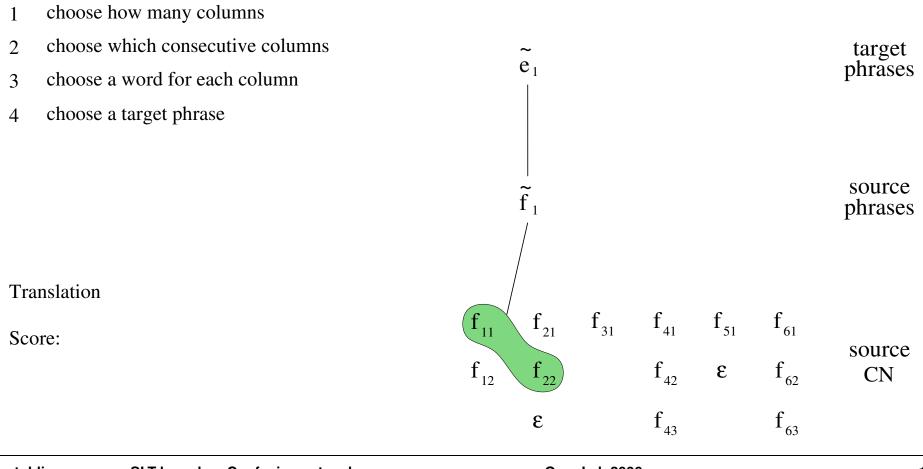
Score:

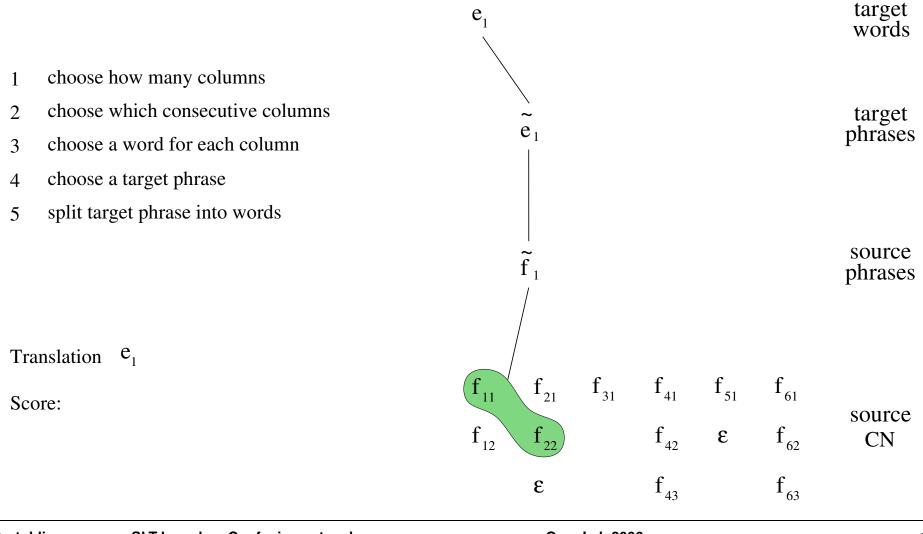


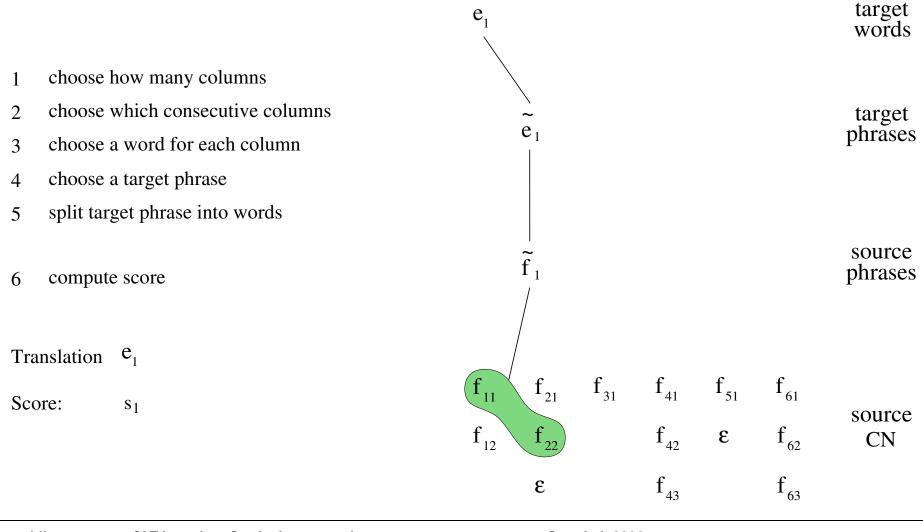
Bertoldi

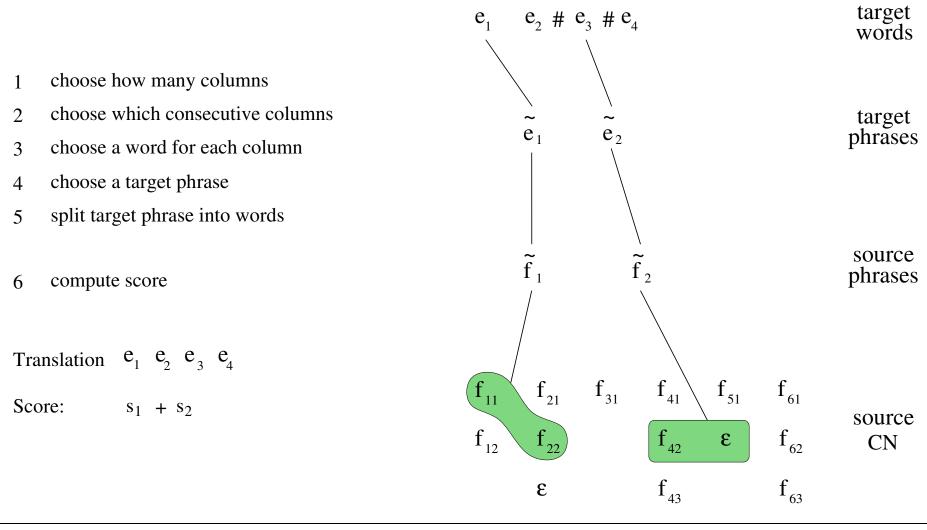
- 1 choose how many columns
- 2 choose which consecutive columns
- 3 choose a word for each column

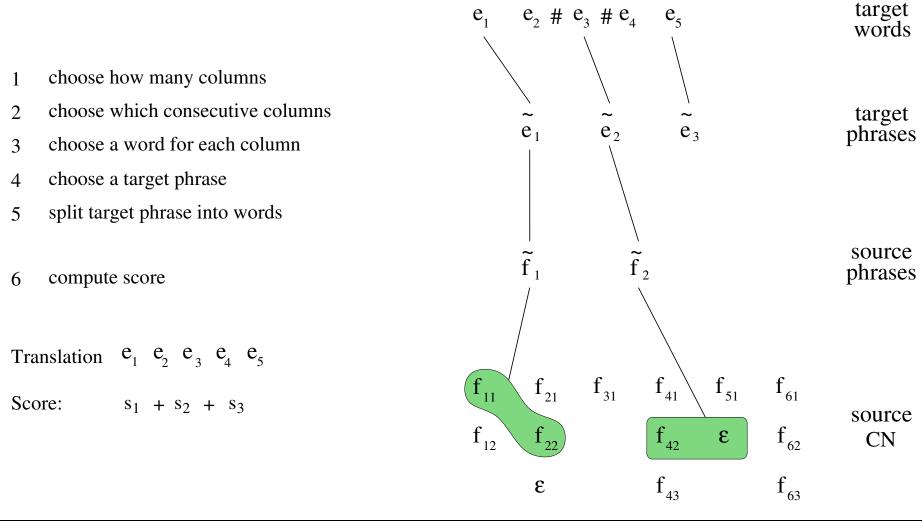


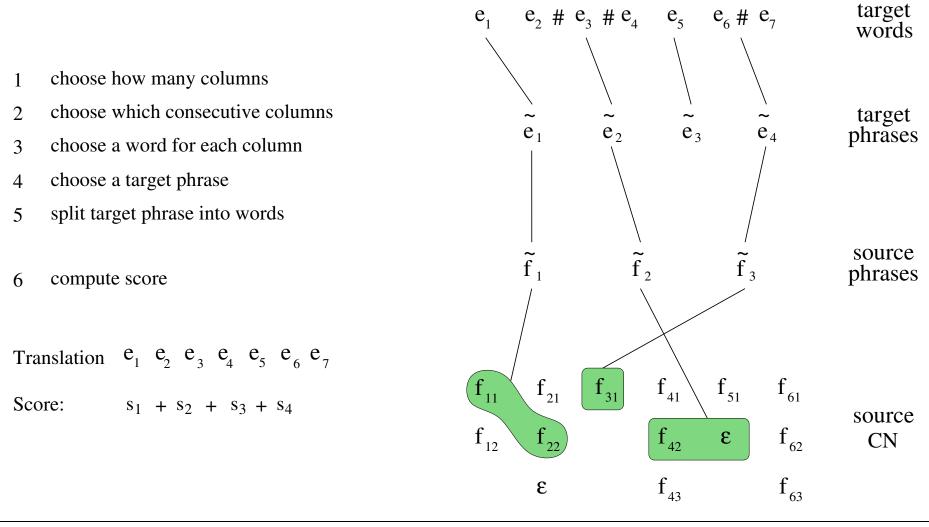


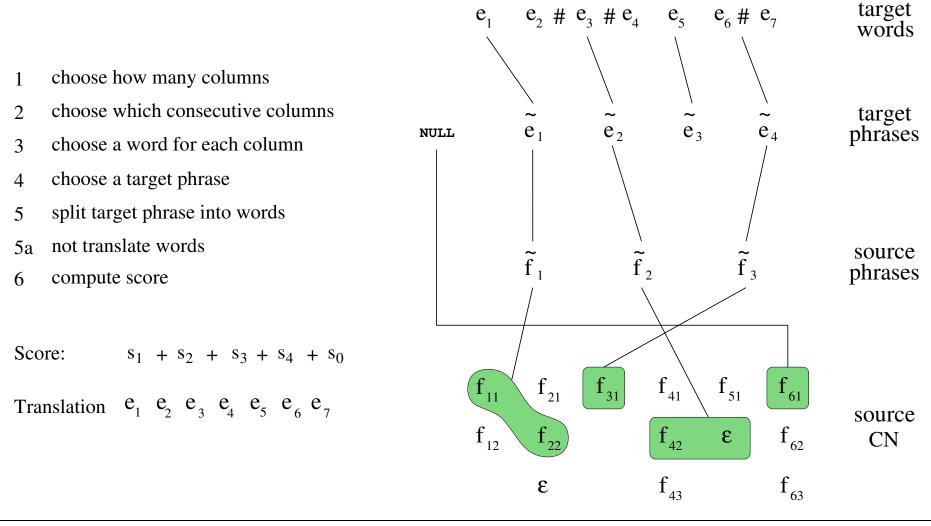












- Generative translation process
- Synchronous on output phrases

- Generative translation process
- Synchronous on output phrases
- Dynamic programming
- Beam search: deletion of less promising partial translations

- Generative translation process
- Synchronous on output phrases
- Dynamic programming
- Beam search: deletion of less promising partial translations
- Reordering constraints: reduction of possible alignments
- Lexicon pruning: no more than 30 translation per phrase
- Confusion network pruning: removal of less confident words

- Generative translation process
- Synchronous on output phrases
- Dynamic programming
- Beam search: deletion of less promising partial translations
- Reordering constraints: reduction of possible alignments
- Lexicon pruning: no more than 30 translation per phrase
- Confusion network pruning: removal of less confident words
- Word graph generation: representation of the whole search space
- N-best extraction: multiple translations

$N\mbox{-}{\rm best\mbox{-}based}$ SLT system

$N\mbox{-}{\rm best\mbox{-}based}$ SLT system

• relies on a text-based decoder: simplified verison of the CN-based decoder

$N\mbox{-}{\rm best\mbox{-}based}$ SLT system

- relies on a text-based decoder: simplified verison of the CN-based decoder
- \bullet translates separately all $N\text{-}\mathsf{best}$ transcriptions

$N\mbox{-}b\mbox{est-based}$ SLT system

- relies on a text-based decoder: simplified verison of the CN-based decoder
- \bullet translates separately all $N\text{-}\mathsf{best}$ transcriptions
- \bullet adds acoustic and source LM scores provided with the N-best transcriptions

$N\mbox{-}b\mbox{est-based}$ SLT system

- relies on a text-based decoder: simplified verison of the CN-based decoder
- \bullet translates separately all $N\text{-}\mathsf{best}$ transcriptions
- adds acoustic and source LM scores provided with the N-best transcriptions
- reranks the outputs

Evaluation

- Shared Task T3: integration of ASR and MT
- Input: human, automatic, *N*-best, Confusion Networks
- Automatic evaluation: BLEU score, case insensitive

	Train		Dev		Test	
Sentences	1,2M		2,643		1,073	
Running words	31M 30M		20K	23K	18.9K	19.3K
Vocabulary	140K 94K		2.9K 2.6K		3.3K	2.8K
best transcription WER			11.77%		14.90%	

		DEV				TEST					
	input		BLEU time	inp	out	BLEU	time				
	size	WER			size	WER					
human	1	0	45.78	0.6	1	0	40.84	1.7			

• comparable to ASR WER

	DEV				TEST					
	input		BLEU	time	inp	out	BLEU	time		
	size	WER			size	WER				
human	1	0	45.78	0.6	1	0	40.84	1.7		
1-bst	1	11.77	40.17	0.6	1	14.60	36.64	2.1		

	DEV				TEST					
	input		BLEU	time	inp	input		time		
	size	WER			size	WER				
human	1	0	45.78	0.6	1	0	40.84	1.7		
1-bst	1	11.77	40.17	0.6	1	14.60	36.64	2.1		
5-bst	4	8.12	40.63	2.8	5	11.90	36.47	10.5		
10-bst	8	6.99	40.83	5.3	9	11.02	36.75	20.4		
20-bst	13	6.19	41.03	9.8	16	10.20	36.55	38.9		
50-bst	25	5.40	40.85	20.6	34	9.47	36.66	84.2		
100-bst	38	5.07	40.87	33.2	56	9.09	36.68	135.3		

- 10% decrement due to ASR
- comparable to ASR WER

- few transcriptions
- difficult to improve

	DEV				TEST				
	input		BLEU	time	inp	input		time	
	size	WER			size	WER			
human	1	0	45.78	0.6	1	0	40.84	1.7	
1-bst	1	11.77	40.17	0.6	1	14.60	36.64	2.1	
5-bst	4	8.12	40.63	2.8	5	11.90	36.47	10.5	
10-bst	8	6.99	40.83	5.3	9	11.02	36.75	20.4	
20-bst	13	6.19	41.03	9.8	16	10.20	36.55	38.9	
50-bst	25	5.40	40.85	20.6	34	9.47	36.66	84.2	
100-bst	38	5.07	40.87	33.2	56	9.09	36.68	135.3	
cn-p00	1	11.67	40.30	4.0	1	14.46	36.54	28.4	
cn-p50	4	9.42	41.06	5.8	32	11.86	37.14	31.2	
cn-p55	13	8.93	41.21	6.3	150	11.32	37.23	34.7	
cn-p60	194	8.41	41.24	6.7	1,284	10.71	37.21	37.9	
cn-p65	1,359	7.91	41.21	7.4	9,816	10.16	37.05	43.9	
cn-p70	15,056	7.53	41.23	27.4	228,461	9.71	37.14	54.6	

- 10% decrement due to ASR
- comparable to ASR WER

- few transcriptions
- difficult to improve

- \bullet CN slightly better than $N\text{-}\mathsf{bst}$
- CN contains more hypotheses
- higher ASR WER
- CN is more efficient

- generation of richer CNs
 - with lower WER
 - with limited size

- generation of richer CNs
 - with lower WER
 - with limited size
- introduction of other features related to input:
 - source LM: reliability of a path

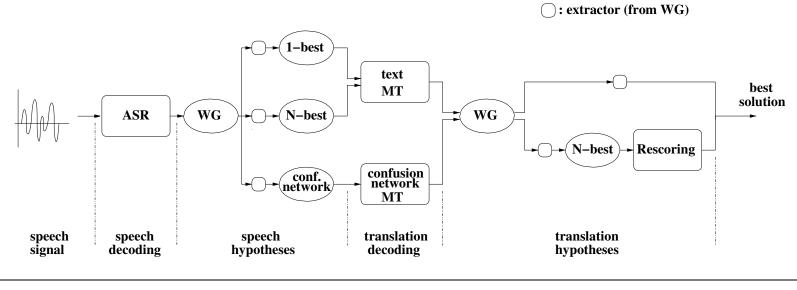
- generation of richer CNs
 - with lower WER
 - with limited size
- introduction of other features related to input:
 - source LM: reliability of a path
- experiment on a more difficult task (higher ASR WER)

- generation of richer CNs
 - with lower WER
 - with limited size
- introduction of other features related to input:
 - source LM: reliability of a path
- experiment on a more difficult task (higher ASR WER)
- decoding the whole ASR WG

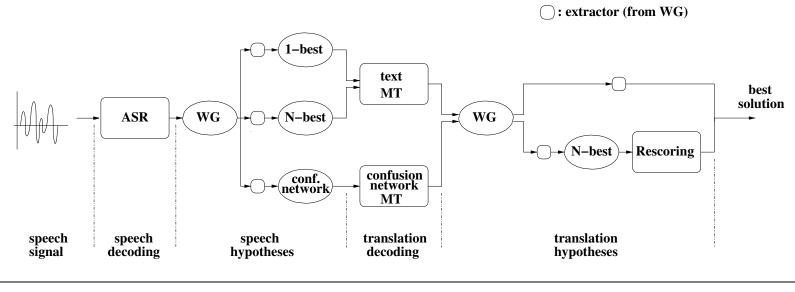
Thanks for your attention!

References

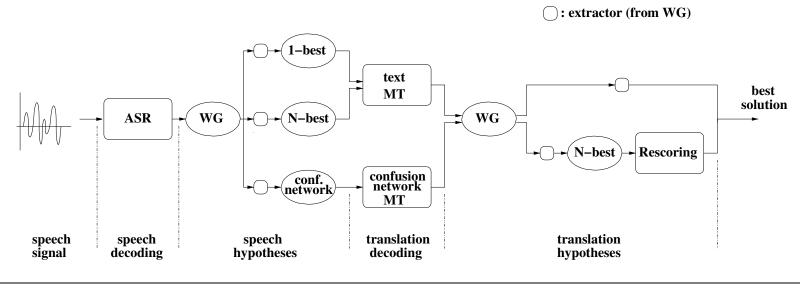
- [1] Ney, "Speech Translation: Coupling of Recognition and Translation". ICASSP 1999.
- [2] Bangalore and Riccardi, "Stochastic finite-state models for spoken language machine translation". *Machine Translation*, 17(3), 2002.
- [3] Zhang et al., "A Unified Approach in Speech-to-Speech Translation: Integrating Features of Speech Recognition and Machine Translation". *COLING 2004*.
- [4] Casacuberta et al., "Some approaches to statistical and finite-state speech-to-speech translation". *Computer Speech and Language*, 18, 2004.
- [5] Mangu et al., "Finding consensus among words: Lattice-based word error minimization". *ISCA ECSCT 1999*.
- [6] Quan et al., "Integrated n-best re-ranking for spoken language translation". Interspeech 2005.
- [7] Cettolo et al., "A look inside the ITC-irst SMT system". MT Summit X 2005.
- [8] Federico and Bertoldi, "A word-to-phrase statistical translation model". Transactions on Speech and Language Processing. 2(2). 2005.
- [9] Bertoldi and Federico, "A New Decoder for Spoken Language Translation based on Confusion Networks". ASRU 2005.



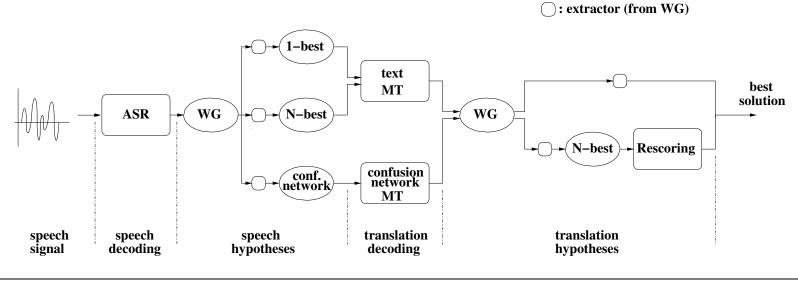
 \bullet different input types: text, N-best, Confusion Networks



- different input types: text, N-best, Confusion Networks
- two-step decoder



- different input types: text, N-best, Confusion Networks
- two-step decoder
- rescoring with additional features



- different input types: text, *N*-best, Confusion Networks
- two-step decoder
- rescoring with additional features
- reranking with optimized weights

