

The 2006 LIMSI Translation System for TC-STAR

D. Déchelotte

The data

Corpus processing and training

The translato

The translato

Decoding details

Quantitative data

Translation's output

Post-decoding experiments

Parameter tuning Long sentence

Improved targe

The 2006 LIMSI Translation System for TC-STAR

Presentation for OpenLab 2006

Daniel Déchelotte Holger Schwenk Jean-Luc Gauvain

Group TLP (spoken language processing)
LIMSI-CNRS
Université Paris-Sud, France

1st April 2006

Talk outline

The 2006 LIMSI Translation System for TC-STAR

D. Déchelott

The dat

Corpus processing and training Handling ASR input

The translator

Decoding details

Quantitative data

Translation's output

Post-decoding experiments Parameter tuning Long sentence handling

andling mproved target anguage model

The data

- Corpus
- Corpus processing and training
- Handling ASR input
- 2 The translator
 - Principles
 - Decoding details
 - Quantitative data
 - Translation's output
- Post-decoding experiments
 - Parameter tuning
 - Long sentence handling
 - Improved target language model

Data and condition

The 2006 LIMSI Translation System for TC-STAR

D. Déchelott

The dat

Corpus processing and training Handling ASR input

The translato

Decoding details Quantitative data Translation's output

Post-decoding experiments Parameter tuning Long sentence handling EPPS data

- As of March 2006: from 1996 to May 2005
- Verbatim (manual transcription of speech) and ASR (automatic speech recognition) conditions
- True case, with ponctuation

Sample verbatim and ASR source sentences, with references

Verbatim: conviene recordarlo , porque puede que se haya olvidado .

ASR: conviene recordar porque puede que se haya olvidar .

Reference #1: it is appropriate to remember this , because it may have been forgotten .

Reference #2: it is good to remember this , because maybe we forgot it .

Corpus processing and training

The 2006 LIMSI Translation System for TC-STAR

D. Déchelott

I he data Corpus Corpus processing and training

and training
Handling ASR input

Principles Decoding details Quantitative data

Post-decoding experiments

Parameter tuning

Long sentence handling

Improved target

- Strip section titles and speaker names
- Semi-reversible conversion to latin1 (highlights numerous normalization issues)
- "verbatimization" of training data (which is in FTE condition): tranform numbers from digits to letters, mainly
- Run Giza++ with all options at their default value (same training sequence, same "-p0 0.98" flag as in "trainGIZA++.sh" script, no word classes)

Handling ASR input

The 2006 LIMSI Translation System for TC-STAR

D. Déchelott

The dat

Corpus processing and training Handling ASR input

The translator

Decoding details

Quantitative data

Translation's output

Post-decoding experiments
Parameter tuning
Long sentence handling
Improved target

- ROVER input
 - case sensitive
 - little punctuation (no commas, few periods)
 - \bullet WER of 6.1% in case insensitive, no punctuation condition
 - \bullet WER of 16.1% in case sensitive, with punctuation
- Suppress filler words and partial words
- ROVER repunctuation and re-case-ification:

Replace every word by $\frac{\text{Word}}{\text{Word}}$, propose to insert $\frac{\text{Word}}{\text{WORD}}$

</s><s> at pauses and rescore.

Parameters adapted so as to reproduce the number of punctuation signs in the development data.

Decoder high-level principles

The 2006 LIMSI Translation System for TC-STAR

D. Déchelott

The dat

Corpus processing and training Handling ASR input

Principles

Decoding details

Quantitative data

Translation's output

Post-decoding

Parameter tuning Long sentence handling

- A* decoder
- Manages partial hypotheses. Example:
 "the blue", partial translation of "la maison bleue".
- Starts from the empty hypothesis: OO
- Considers the most promising hypothesis
 - if complete: it is the algorithm's output
 - if not, extend the partial hypothesis

Extension of a partial hypothesis (1/3)

The 2006 LIMSI Translation System for TC-STAR

D. Déchelott

I he dat

Corpus processing and training Handling ASR input

Principles

Decoding details

Quantitative data

Translation's output


Post-decoding experiments

Parameter tuning Long sentence handling

Improved target

Four extension operators.

- "Append"
 - Produces one target word
 - Aligns one uncovered source word to a new target word
 - Produces several hypotheses

Extension of a partial hypothesis (2/3)

The 2006 LIMSI Translation System for TC-STAR

D. Déchelott

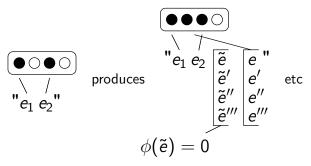
The dat

Corpus processing and training

The translato

Principles

Quantitative data


Translation's output

Post-decoding

Parameter tuning Long sentence handling

Improved targe language mode

- "Insert n infertile words and Append"
 - Produces several target words
 - Aligns one uncovered source word to the last one
 - Produces several hypotheses (in practice, n = 1)

Extension of a partial hypothesis (3/3)

The 2006 LIMSI Translation System for TC-STAR

D. Déchelott

The dat

Corpus processing and training

The translat

Principles

Decoding details

Quantitative data

Translation's output

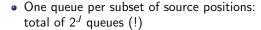
Post-decoding

Parameter tuning

nandling Improved target anguage model

- "Extend"
 - Produces no target word
 - Aligns one uncovered source word to the last produced target word (increasing its fertility)
 - When applicable, produces one partial hypothesis

- "Complete with e_0 "
 - Produces no target word
 - Aligns all uncovered source words to e₀
 - When applicable, produces one complete hypothesis



Managing partial hypotheses

The 2006 LIMSI Translation System for TC-STAR

Decoding details

 Hypotheses that cover (i.e. translate) the same words: direct comparison

10

- Small queues: 10 or 20 hypotheses

Inter-queue comparison: admissible heuristics

Maximum probability to translate source word f_i :

$$H^{TFD}(j) = \max \left\{ \frac{t(f_j|e_0)}{t(f_j|e)}, \max_{e \neq e_0, \phi} t(f_j|e) \sqrt[\phi]{n(\phi|e)} h^D \right\}$$
(1)

D: Distorsion (h^D constant) F: Fertility T: Translation

Limitation, pruning, and decoding time

The 2006 LIMSI Translation System for TC-STAR

D. Déchelott

The dat

Corpus processing and training Handling ASR input

The translator

Decoding details

Quantitative data

Translation's output

Post-decoding experiments

Parameter tuning
Long sentence
handling
Improved target

- List of alternative translations: up to 40 per source word, pruned at 10^{-2}
- Queue size of 10 or 20
- "Berger-like" reordering limitation: max. of 4 untranslated words on the left of the rightmost translated word
- Drastic source sentence length limitation: up to 16 words (workaround in a few slides)
- Translation time: 1 second for a 10 word long sentence, doubling every extra source word

Translation's output

The 2006 LIMSI Translation System for TC-STAR

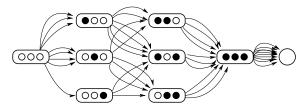
D. Déchelott

The dat

Corpus processing and training Handling ASR input

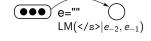
The translato

Decoding details


Quantitative data

Translation's output

Post-decoding


Parameter tuning Long sentence handling

handling Improved targe language mode • (Extremely) Schematic word lattice

- Zoom on normal edge
 - e="blue" $t(f_2|e)$ $\phi(1|e)$ $d_{=1}(1)$ $\mathsf{LM}(e|e_{-2},e_{-1})$

Zoom on final edge

Translation's output

The 2006 LIMSI Translation System for TC-STAR

D. Déchelott

The dat

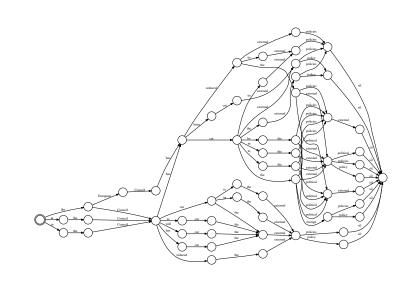
Corpus processing and training

Handling ASK in

The trans

Principles

Decoding details


Translation's output

Post-decodin

Parameter tuning

Long sentence handling

Improved targ

Parameter tuning

The 2006 LIMSI Translation System for TC-STAR

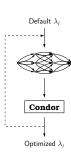
D. Déchelott

The da

Corpus processing and training Handling ASR input

The translator

Decoding details
Quantitative data
Translation's output


Post-decoding experiments

Parameter tuning

Long sentence handling Improved target language model Five features to tune: lexical, fertility, distorsion, and spontaneous insertion models, target language model

- Produce lattices (for the whole development set) with default weights
- Write a script that, given the weights, rescores the lattices and outputs the corresponding BLEU score
- Use Condor [1] to find the best weights
- Iterate, if the new weights are very different
- Gain: from 37.36 to 42.35, in a few hours

[1] http://iridia.ulb.ac.be/~fvandenb/

Chopping long sentences into smaller chunks (1/3)

The 2006 LIMSI Translation System for TC-STAR

D. Déchelot

The dat

Corpus processing and training Handling ASR input

The translator

Decoding details

Quantitative data

Translation's output

Post-decoding experiments

Parameter tunin Long sentence handling

Improved targ

- Arbitrary input sentence length (dev06's maximum: 222)
- Current decoder doesn't scale to long sentences
- Split into smaller chunks:
 - Where? At ponctuation marks, and then uniformly
 - How to influence decoding? Extra marker in TLM
 - Produce lattices, then merge them and rescore

Chopping long sentences into smaller chunks (2/3)

The 2006 LIMSI Translation System for TC-STAR

D. Déchelott

The dat

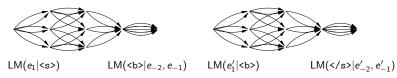
Corpus processing and training Handling ASR input

The translato

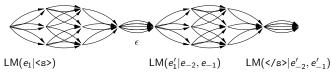
Decoding details

Quantitative data

Translation's output


Post-decoding experiments

Parameter tuning


Long sentence
handling

Improved target

Translating chunks with special LM

Joining lattices and rescoring with normal LM

Chopping long sentences into smaller chunks (3/3)

The 2006 LIMSI Translation System for TC-STAR

D. Déchelott

The dat

Corpus processing and training Handling ASR input

The translator

Decoding details

Quantitative data

Translation's output

Post-decoding experiments Parameter tuning Long sentence

Long sentence handling Improved target language model BLEU (%) on verbatim dev06

Before parameter tuning

	1-best concatenation	Lattice concatenation
Normal 3g	31.14	33.57
3g with 	36.54	37.36

After parameter tuning

	1-best concatenation	Lattice concatenation
Normal 3g	40.20	41.63
3g with 	41.45	42.35

Improved target language model

The 2006 LIMSI Translation System for TC-STAR

D. Déchelott

The dat

Corpus processing and training Handling ASR input

The translator

Decoding details

Quantitative data

Translation's outpu

Post-decoding experiments

Parameter tuning
Long sentence
handling
Improved target
language model

	Type	Data set (# of words)	Perplexity	BLEU
	3g	EPPS (33.8 M)	85.5	42.35
-	4g + WP	EPPS + audio trs (740 k)	79.6	43.26
	4g + WP	EPPS + audio trs + BN (352 M) + CNN (232 M)	74.1	no gain
	neural 4g + WP	EPPS + audio trs	65.0	44.30

- Note: new feature added: word-penalty
- Submitted to ACL (Continuous Space Language Models for Statistical Machine Translation)

Conclusions and perspectives

The 2006 LIMSI Translation System for TC-STAR

D. Déchelott

The dat

Corpus processing and training Handling ASR input

The translator

Decoding details

Quantitative data

Translation's output

Post-decoding experiments
Parameter tuning
Long sentence
handling
Improved target
language model

- Work on verbatim and ASR conditions
- A* decoder for translation
- Output: word lattice with individual scores, allows efficient rescoring
- Tuning with Condor
- Neural 4g target language model
- Future: context dependent models, and phrase-based model

Questions and discussion Thank you for your attention

The 2006 LIMSI Translation System for TC-STAR

D. Déchelot

The data

Corpus

and training

The translat

The translate

Principles

Decoding deta

Quantitative da

Post-decoding

Parameter tuning

Improved target language model Questions and discussion