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Abstract

We present a hierarchical phrase-based
translation model which annotates and
generalizes existing phrase translations
with syntactic categories derived from
parsing the target side of a parallel corpus.
We associate target parse trees for each
training sentence pair with a search lattice
constructed from the existing phrase trans-
lations on the corresponding source sen-
tence, and consider techniques to produce
a syntactically motivated bilingual syn-
chronous grammar. We describe refine-
ments to a chart based decoder and k-best
extraction techniques to effectively parse
the resulting grammar, which contains
up to 4000 syntax-derivated nonterminals,
producing translations that achieve signif-
icant improvements over Pharaoh, a state-
of-the-art phrase based system, on the Eu-
roparl French-to-English task (Koehn and
Monz, 2005).

1 Introduction

Recent work in machine translation has evolved
from the traditional word (Brown et al., 1993) and
phrase based (Koehn et al., 2004) models to in-
clude hierarchical phrase models (Chiang, 2005)
and bilingual synchronous grammars (Melamed,
2004). These advances are motivated by the de-
sire to integrate richer knowledge within the trans-
lation process to explicitly address limitations of
the purely lexical phrase-based model. As (Chi-
ang, 2005) and (Koehn et al., 2003) note, phrase-
based models suffer from sparse data effects when
required to translate conceptual elements that span
or skip across several words, and distortion based

reordering techniques tend to limit their range
of operation for reasons of efficiency and model
strength (Och and Ney, 2004).

Generalized phrases as discussed in (Chiang,
2005) and noted in (Block, 2000), attempt to di-
rectly address the limitiations of purely lexical
phrases, and have shown significant improvements
in translation quality by introducing constructs
for sub-phrase representation. (Block, 2000) in-
troduces a single generalization per phrase with-
ing the EBMT framework, while (Chiang, 2005)
can generate multiple generalizations within each
phrase. In both these cases, however, generaliza-
tions are represented by a single sub-phrase cate-
gory (and a glue rule for serial combination), pro-
viding the ability (and risk) of inserting any avail-
able sub-phrase into a larger phrase. To compete
with state-of-the-art phrase based systems, (Chi-
ang, 2005) extends this single category grammar
by intersecting it with a n-gram language model,
introducing additional nonterminal categories into
the decoding process.

The formalism underlying hierarchical phrases
is a synchronous context-free grammar (SynCFG),
requiring a chart based decoding process that is
significantly more computationally intensive than
beam based decoding. Using a single generaliza-
tion category X (left hand side in CFG notation) as
in the work cited above, allows tractable parsing
of the intersected grammar, at the cost of a more
directed search process during parsing.

(Chiang, 2005) also restricts the grammar ac-
cording to several noted principles, specifically al-
lowing only 2 generalizations within a single rule
and discarding rules which contain adjacent gen-
eralizations. These restrictions amongst others de-
scribed are designed to compensate for the use of
a single generalization category. It is easy to see



why they are necessary. Every phrase is marked
with the same category X, allowing it to fill in any
generalization of a phrase above it in the hierarchy.
Without the knowledge of syntactic categories to
restrict possible hierarchical combinations, these
restrictions are required to make parsing tractable,
at the expense of representational ability in the
grammar.

In this work we consider the scenario where we
have access to a target language parser to anno-
tate and guide the generalization of the derived
synchronous grammar. By associating target lan-
guage parse trees with their corresponding search
lattice built by lexical phrases (trained using tradi-
tional phrase extraction techniques (Koehn et al.,
2004)) on the source sentence, we assign syntactic
categories to phrases that align directly with the
parse hierarchy. We also introduce syntax-derived
categories that represent partially matched syntac-
tic categories, thereby annotating every phrase in
the initial phrase table. Our techniques produce
around 4000 unique categories, limiting any at-
tempt to intersect this grammar with a finite state
n-gram language model. However, the result-
ing SynCFG also supports the translation process
when the language model is confronted with un-
seen n-grams.

Our work addresses specific issues with induc-
ing a grammar directly from parallel text, but
does not move towards the work of (Yamada and
Knight, 2002), where linguistic structures and mo-
tivation drive even the operation of the parsing
process.

To accommodate for this extensive grammar,
we introduce refinements to our chart based de-
coder and K-best extraction techniques that fa-
cilitate the use of a traditional n-gram language
model during the decoding process. In this pa-
per we will describe the generation of annotated
and generalized phrases from traditional (lexical)
phrase based resources, and develop techniques to
efficiently parse the resulting synchronous gram-
mar. We provide an approximation of the mod-
els described in (Chiang, 2005), and show that un-
der the same parsing model, translation quality can
be improved by considering syntactic and syntax-
derived categories when generating the translation
grammar.

2 Syntactic Synchronous Grammar

Traditional phrase-based translation as described
in (Koehn et al., 2003) serves as the lexical foun-
dation for our syntactic synchronous grammar
(SynCFG)—syntactic, since its non-terminals are
syntactic categories derived from parsing the tar-
get side of the parallel training corpus, and syn-
chronous because they define operations to derive
the source and target language simultaneously.
Word alignment (Brown et al., 1993) driven phrase
translations are extracted from the parallel training
data, and we parse the target side of the training
corpus with Charniak’s parser (Charniak, 2000),
set with parameters to generate parses quickly at
the cost of some accuracy. With these resources
(the phrase table and the target side parser for each
sentence in the training data), we aim to construct
a synchronous grammar of the form

X → 〈λ, α,∼〉

to use the notation in (Chiang, 2005), where
λ : f1 . . . Yi . . . fm is a sequence of termi-
nals and non-terminals in the source language,
α : e1 . . . Yj . . . . . . en is a sequence of terminals
and non-terminals in the target language, and
∼ indicates a 1-1 correspondence between non-
terminals Y across λ and α. Under this notation,
phrase table entries define purely lexical λ and α.

To produce grammar rules from the phrase table
entries, we annotate them with production cate-
gories and generalize them to form rules with non-
terminals in their λ and α components by consid-
ering each sentence pair in the parallel corpus. For
a given sentence pair, we apply the phrase table
to the source sentence, creating a finite state lat-
tice, that a traditional beam decoder would search
to produce its translation output. We then consider
the alignment of this lattice to the target side parse
tree generated earlier, performing the annotation
and generalization step as described below.

Annotation For each edge in the search lattice
(i.e., target side of phrase pair), check if its span
corresponds directly to a syntactic constituent in
the target side parse tree. If we see an exact match,
we assign the syntactic category to the phrase pair,
setting the left hand side in the SynCFG rule.
Phrase pairs that do not correspond to a span in
the parse tree are given a default category ”X”,
and can still play a role in the decoding process.
In a variant of our rule extraction system, we as-



sign such phrases an extended category of the form
C1 + C2, C1/C2, or C2\C1, indicating that the
phrase pair’s target side spans two adjacent syn-
tactic categories (e.g., she went: NP+V), a par-
tial syntactic category C1 missing a C2 at the right
(e.g., the great: NP/NN), or a partial C1 missing
a C2 at the left (e.g., great wall: DT\NP), respec-
tively.

Generalization In order to mitigate the effects
of sparse data when working with phrase and n-
gram models we would like to generate gener-
alized phrases, which include non-terminal sym-
bols that can be filled with other phrases. There-
fore, after annotating the initial rules from the cur-
rent training sentence pair, we adhere to (Chiang,
2005) to recursively generalize each existing rule

N → f1 . . . fm/e1 . . . en

for which there is an initial rule

M → fi . . . fu/ej . . . ev

where 1 ≤ i < u ≤ m and 1 ≤ j < v ≤ n, to
obtain a new rule

N → f1 . . . fi−1Mkfu+1 . . . fm/e1 . . . ej−1Mkev+1 . . . en

where k is a new index for the nonterminal M that
expresses the one-to-one correspondence between
the new occurrence of M on the source side and
the corresponding one on the target side.

Unlike in (Chiang, 2005) we abstract on a per-
sentence basis, and allow for different nontermi-
nals in our grammar. Figures 1 illustrates the
annotation and generalization process on the first
sentence pair in the Europarl corpus.

Filtering Since our system allows for a vast
number of possible rules to be extracted, we need
to consolidate our rule base after around every
20000 training sentences processed. In this step,
non-lexical rules that have occurred only once so
far are eliminated from the rule bank.

Glue rule We also augment the grammar with a
“glue” rule as per (Chiang, 2005) that allows us to
connect partial derivations of the source sentence
in series.

2.1 Decoding Features
As in (Chiang, 2005), we employ a log-linear
model to decode a source sentence f with the
SynCFG, representing translation quality in a set

NP->@DT session/DT session

S -> reprise de @NP/resumption of @NP

NP->la session/the session

X -> reprise de/resumption of

N->session/sessionDT->la/theIN->de/ofN->reprise/resumption

reprise de la session

S -> [NP (N resumption) ]  [PP (IN of)] [NP [ (DT the) (N session) ]

Figure 1: Selected annotated and generalized
(dotted arc) rules for the first sentence of the Eu-
roparl training corpus

of features for each rule. We combine these rules
with a n-gram language model to find a derivation
R(f) in a chart parsing decoder as described in the
next section. We augment each grammar rule with
the following features:

• source- and target-conditioned neg-log lex-
ical weights as described in (Koehn et al.,
2003)

• neg-log relative frequencies: left-hand-
side-conditioned, target-phrase-conditioned,
source-phrase-conditioned

• Counters: n.o. rule applications, n.o. target
words

• Flags: IsPurelyLexical (i.e., contains only
terminals), IsPurelyAbstract (i.e., contains
only nonterminals), IsXRule (i.e., non-
syntactical span), IsGlueRule

• Penalties: rareness penalty exp(1 −
RuleFrequency) (highest penalty 1 if rule
is a singleton, exponentially decaying
with frequency); unbalancedness penalty
|MeanTargetSourceRatio ∗ ‘n.o. source words’−
‘n.o. target words’|

3 Parsing

Given a source sentence f to translate with our
SynCFG, we model the decoding process as a
search through the derivation space of f , where the
lowest cost derivation encodes a target translation



sequence in α. We define our translation model in
log-linear space (dealing with costs, not scores) as

arg min
R0◦···◦Rn

lm(tgtR0◦···◦Rn) +
m∑

i=1

λi

n∑
j=1

(vj)i .

(1)
where R1 ◦ · · · ◦ Rn is a derivation for f and
v1, . . . , vn ∈ Rm are the feature vectors of the ap-
plied rules R1, . . . , Rn. Further, lm(tgtR0◦···◦Rn)
denotes the neg log probability of the target
language sequence represented by the derivation
R0 ◦ · · · ◦ Rn, and λ1, . . . , λm are the parameters
of the log-linear model, which are trained to max-
imize translation quality according to the BLEU
metric (Papineni et al., 2002) on held out data us-
ing Minimum-Error-Rate training (Och, 2003).

The criterion defined above does not lend itself
easily to a dynamic programming search of the
derivation space due to the language model’s de-
pendance on decisions made at each subsequent
step of the derivation. (Chiang, 2005) addresses
this issue by intersecting his single-nonterminal
grammar with an n-gram language model as a fi-
nite state automaton. In our work, this method
is not appropriate, since each non-terminal sym-
bol (from the set of up to 4000 in our extended-
category variant) will become lexicalized with lex-
ical information from the n-gram language model.
A naive approximation would involve parsing
without the language model and then rescoring.

Aside from the thorny issue of applying the lan-
guage model during derivation search, we contend
with a much larger search space than the tradi-
tional beam decoder. The SynCFG grammar ex-
tracted from the Europarl French-English corpus
(details below) contains over 8 million rules after
it has been filtered for the test set.

Instead of the common method of converting
the CFG grammar into Chomsky Normal Form
and applying a CYK algorithm to produce the
most likely parse for a given source sentence, we
avoided the explosion of the rule set caused by
the introduction of new non-terminals in the con-
version process and implemented the CYK+ algo-
rithm (Chappelier and Rajman, 1998) in a variant
that handles arbitrarily lexicalized rules.

Parsing framework In each chart cell we store
a set of Nodes, each one corresponding to a par-
ticular syntactic category for that node. Within
each Node, we maintain a heap of derivations,
or completed hypotheses to use the CYK+ ter-

minology, whose syntactic category matches the
Node. Maintaining multiple Nodes in each cell
orients our parser closer to a beam based parsing
approach, since we cannot make definitive prun-
ing decisions across derivations that result in dif-
ference categories during parsing. The syntac-
tic categories serve a similar role to n-gram lan-
guage models in a traditional beam based decoder.
Within each Node is a minheap (fast access to the
lowest cost element) of derivations. The lowest
cost derivation (complete hypothesis for a span)
serves as a prototype for this Node. Each complete
hypothesis maintains a backwards star (Huang and
Chiang, 2005) that points back to Nodes, rather
than other complete hypotheses.

Matching Incomplete Rules The CYK+ algo-
rithm relies on the ability to match incomplete
parse hypotheses with complete hypotheses in a
bottom up fashion. For any two cells in the
chart (columns representing source sentence po-
sitions, and rows representing number of words
spanned) that correspond to adjacent source spans,
the CYK+ algorithm considers each combination
of an incomplete hypothesis from one cell with a
complete hypothesis in the other cell to apply the
Fundamental Rule.

The incomplete hypotheses represent rules that
are partially satisfied (’dotted rules’) Most incom-
plete rules, however, will never actually be used
in a successful derivation of the whole sentence.
We store our rules in a BTree structure that allows
quick addressing by prefixes of rule source-sides
(λ), and only store prefixes (representing all in-
complete hypotheses whose sequence of symbols
left of the dot is equal to the stored prefix) within
the chart cells. Thus, instead of storing and propa-
gating incomplete hypotheses, we simply note that
at least one rule has been been partially matched.

When we apply the Fundamental Rule, we
query the prefix p concatenated with the produc-
tion result r of the complete hypothesis (that we
are trying to combine with the virtual incomplete
rule) against the rule source sides in our BTree. If
an exact match occurs, this implies that we have
found a complete rule whose span is properly rep-
resented in our chart and we can form a new com-
plete hypothesis. If we have a prefix match, we
store pr as a new prefix in the corresponding chart
cell, standing for all incomplete hypotheses with
pr left of the dot.



Derivation Depth When considering hierarchi-
cal rules, we often encounter multiple derivations
that generate identical target sequences, adding
considerably to the number of hypotheses consid-
ered as we move up the chart during the CYK+
process.

We introduce a pruning parameter that restricts
the use of partial derivations in further calls to
Fundamental Rule. We want to only expand par-
tial derivations that have not engaged in redundant
rule usage, i.e., we want to introduce a prefer-
ence towards short derivations. Therefore, when
filing hypotheses in a chart cell of source length
i and source position j, before executing the in-
ner loop of the CYK algorithm, we determine
in a look-ahead step the minimum number Min-
RuleAppCount(i,j) of rule applications possible
across all combinations of complete hypotheses in
cell (source length, source start)=(k, j) with in-
complete hypotheses in cell (i − k, j + k). In
the actual k-loop, we now only allow those deriva-
tions whose number of rules applied is within a pa-
rameter MaxRuleAppCountDifference of the min-
imum number MinRuleAppCount(i,j) possible for
this cell (i,j). While this pruning is greedy, we find
its impact on translation scores minimal in prac-
tice.

Parsing Timeout During the decoding process,
the parser has access to “glue” rules, that allow
two derivations to be joined if they have adja-
cent spans in the source sentence. These deriva-
tions compete with derivations that have applied
generalized rule forms. Minimally, glue rules
and the cell word-to-word translation rules are the
only rules required to obtain a complete deriva-
tion. Given the nature of our rule generation pro-
cess, the number of derivations considered during
parsing, especially for long sentences, can be pro-
hibitively large. We introduce an additional prun-
ing parameter MaxCombinationCount that limits
the number of hierarchical rule applications that
can be performed while parsing a sentence. Once
this limit has been reached, only glue rules can
be applied. This parameter effectively serves as
a timeout, falling back on the “glue” rule to gen-
erate a full sentence parse. In our experiments, we
set MaxCombinationCount = 250000, resulting
in the generation of non-glue complete hypotheses
for chart cells of maximum length between 7 and
13 (depending on the length of the test sentence—
smaller maximum lengths for long test sentences,

greater maximum lengths for short test sentences
since there are less cells of a given length to be
explored).

Lazier-than-Lazy We propose a parsing solu-
tion that uses weak estimates of the language
model during the parsing process, and then
stronger estimates of the language model during
our K-best retrieval, culminating in exact language
model scores assigned to all elements in the K-best
lists.

During the parsing process, when a complete
hypothesis is formed (derivation for a source side
span), we immediately estimate a language model
probability for that derivation. We use a Viterbi
approximation to identify the target words of this
derivation, considering the backward star Nodes
and their prototypical hypothesis for their target
word derivations. We perform this process recur-
sively as we parse through the chart so that we
do not have to re-evaluate the whole derivation
each time. If the target words for a derivation are
e1 . . . el, we compute p(el|el−1 . . . el−c under the
standard independence assumptions in the n-gram
model with context size c. The first c words and
and the last c words are noted in this derivation,
and this derivation is added to its corresponding
Node (based on its syntactic category). Its cost for
the min-heap is calculated using the equation in
1, with the language model component being ap-
proximated by the estimate that we described here.

During K-Best retrieval, we adopt a strategy
similar to (Huang and Chiang, 2005), but add
an additional level of lazy management. Instead
of expanding breadth-first, we expand depth-first,
avoiding the risk of adding several alternative hy-
potheses to the beam that may not factor in the
Top-K after the language model has been applied.
For example, if the final sentence spanning deriva-
tion used the rule “S → I @VP to @NP”, (@
is used to indicate non-terminal categories), then
we would expand @V P first, adding for example
“S → I went to NP”, and “S → I left to NP”, to the
search beam, instead of directly adding ‘S → I left
to the house”. Complete derivations are stored on
the beam by equation 1, during lazier K-Best re-
trieval we update the language model estimate of
each derivation that we add onto the beam. Since
this K-Best variant expands derivations from left
to right, we can correct the language model esti-
mate as we go, until we finally have the exact lan-
guage model estimate for the sentence spanning



derivation.

Unique Derivations The nature of our extracted
SynCFG implies that there will be several deriva-
tions that result in the same target words being
generated, leading to limited diversity in the K-
Best list which is used for Minimum Error Rate
(Och, 2003) optimization. We address this is-
sue during our lazier K-Best list retrieval. When
a derivation “pNewHyp” (which will contain ter-
minals and non-terminals) is about to be added
to the K-Best retrieval beam, we check to see if
there has already been another derivation “pEx-
istingHyp” that generated the same target words
and refers to the same non-terminals, that has al-
ready been added to the beam. If the total cost of
“pNewHyp” is higher than “pExistingHyp” then
we avoid adding “pNewHyp” to the beam. Intro-
ducing this feature dramatically improves the di-
versity in the final K-Best list. Before applying
this pruning in the beam, requesting a 1000 best
list for one sentence would usually yield approx-
imately 100 unique translations. After applying
this pruning we consistently retrieve around 1750
unique translations on average when we set K to
2000.

4 Results

We pesent experiments on the Europarl French-
English task as defined at the NAACL 2006 work-
shop: Exploiting Parallel Texts for Statistical Ma-
chine Translations. We compare a state-of-the-
art phrase-based system against several degrees of
modeling refinement within our system. All sys-
tems use the same initial phrase table (maximum
phrase length 7) generated by the scripts provided
for the workshop described in (Koehn et al., 2003).
The language model is also provided in the 2006
shared task, and is built on 13 million English
words using Knesser-Ney smoothing. We evalu-
ated our results using the BLEU metric (Papineni
et al., 2002), optimizing the parameters on the first
500 sentences of the provided ’Development Set’
(identical to last year’s development set), and test-
ing on the provided ’Development Test Set’ (iden-
tical to last year’s test set). The threshold for sta-
tistical significance is 0.78 BLEU points at the 95
percent confidence level as calculated by (Zhang
and Vogel, 2005).

The baseline phrase based translation system is
Pharaoh (Koehn et al., 2004), using the default
settings specified by the provided minimum-error-

rate training scripts (phrase pruning b=100, chart
pruning = 1e-5, distortion limit=4, K-Best=100).
Minimum Error Rate training is run for 13 itera-
tions till convergence, compensating for the rela-
tively smaller K-Best size compared to our exper-
iments.

Our systems are trained for two MER it-
erations and run with MaxRuleAppCountDiffer-
ence=1, MaxCombinationCount=250000, and K-
Best=2000.

• Baseline - Pharaoh as described above

• Lex - Phrase-decoder simulation: using only
the initial lexical rules from the phrase ta-
ble, all with LHS X , and the glue rule. An
additional re-ordering rule is added for swap
based re-ordering and a feature is added to re-
flect this operation (making it comparable to
traditional phrase+reordering systems).

• XCat - All nonterminals are merged into a
single X nonterminal - identical filtering to
(Chiang, 2005)

• Syn - Syntactic extraction using the Penn
Treebank parse categories as nonterminals;
rules containing up to 4 nonterminal abstrac-
tion sites.

• SynExt - Syntactic extraction using the
extended-category scheme, but with rules
only containing up to 3 nonterminal abstrac-
tion sites.

We also explored the impact of longer ini-
tial phrases by training another phrase table with
phrases up to length 12. The results based on
the length-7 phrase table as well as the length-12
phrase table are presented in Table 1.

Our preliminary results show a statistically sig-
nificant improvement of the Syn and SynExt sys-
tem over the traditional phrase based decoding
system. We also see a clear trend towards improv-
ing translation quality as we employ richer extrac-
tion techniques. However, our results do not show
as great an improvement over the baseline as (Chi-
ang, 2005) reported on the Chinese-English Tides
data. We believe that this is due to the difference
in language pairs, French offers less opportunities
to benefit from stronger and better informed re-
ordering models. We expect that before the final
version of this paper we will also have results on



System N.o. nonterminals DevSet BLEU TestSet BLEU
Baseline - max. phrase length 7 0 31.11 30.61
Lex - max. phrase length 7 2 28.96 29.12
XCat - max. phrase length 7 2 30.89 31.01
Syn - max. phrase length 7 75 31.52 31.31
SynExt - max. phrase length 7 3900 31.73 31.41
Baseline - max. phr. length 12 0 31.16 30.90
Lex - max. phr. length 12 2 29.30 29.51
XCat - max. phr. length 12 2 30.79 30.59
SynExt - max. phr. length 12 3900 31.07 31.76

Table 1: Translation results (IBM BLEU) for each system on the Fr-En ’06 Shared Task ‘Development
Set’ (used for MER parameter tuning) and ’06 ‘Development Test Set’ (identical to last year’s Shared
Task’s test set).

Arabic and Chinese, languages where re-ordering
plays a more significant role.

Note also that our decoding performance with
the basic Lex system (which is essentially phrase
based) is significantly below par compared to di-
rect beam based decoding. As we continue to im-
prove the integration between the language model
and the decoder we expect to see improvements of
this baseline as well, with the effect of improving
the performance on each consecutive method.

4.1 Conclusions

In this work we applied syntax based resources
(the target language parser) to annotate and gen-
eralize phrase translation tables extracted via ex-
isting phrase extraction techniques. Our work af-
firms the feasibility of parsing approaches to ma-
chine translation in a large data setting, while still
taking advantage of a n-gram language model to
assist the parsing process. We illustrated the im-
pact of adding syntactic categories to drive and
constrain the structured search space and to play
a complementary role to the traditional language
modeling approach. We expect our further work
to involve experiments with languages where re-
ordering effects are more prominent, allowing this
syntax based approach to have a more significant
impact on translation quality.

Our contributions to the integration of an n-
gram language modeling component within the
parsing process in the form of optimistic estima-
tion during parsing, lazier K-Best retrieval and
forcing unique translations within the K-Best pro-
cess can have a significant impact on the state-
of-the-art in the emerging hierarchical parsing do-
main. Unique K-Best lists are critically important
to effective search space exploration and optimiza-
tion of model parameters, and we expect to con-
tinue our work to more tightly integrate the lan-

guage model during the parsing process.
Our translation system is available open-source

under the GNU General Public License at:
www.cs.cmu.edu/˜zollmann/samt
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