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Abstract 

We discuss phrase-based statistical machine translation 

performance enhancing techniques which have proven 

effective for Japanese-to-English and Chinese-to-

English translation of BTEC corpus.  We also address 

some issues that arise in conversational speech 

translation quality evaluations.    

1. Introduction 

IBM spoken language translation system is based on a 

statistical translation model introduced in [1].  We adopt 

a phrase translation model as the baseline, for which the 

unit of translation is a phrase consisting of one or more 

words, [2], [3], [4], [5], [6]. 

The baseline system is augmented by the 

morphological analysis detailed in [7]  for an improved 

word alignment and phrase selection.  System 

performance is significantly improved by phrase 

selection from recall oriented word alignments (see 

Section 2 for the definition) and filtering.  Re-ordering 

of source language sentence into the target language 

word order, [21], [22], further improves phrase selection 

and word order accuracy.   Non-monotone decoding and 

language model probability computation for every word 

in a target phrase enhances the translation quality over 

monotone decoding and language model probability 

computation only for words at phrase boundaries. 

In Section 2, we give an overview of the baseline 

system. In Section 3,  we discuss translation quality 

enhancing techniques along with experimental results.  

In Section 4, we address some issues in conversational 

speech translation evaluation. We discuss future work in 

Section 5. 

We use the term block (b) to denote a phrase 

translation pair consisting of a source phrase ( f ) and a 

target phrase ( e ).  We use the symbol Pr(·) to denote 

general probability distribution and p(·) to denote 

model-based probability distribution. 

 

2. Baseline System Overview 

 
Our baseline phrase translation system described in 

[Tillmann 2003] consists of three major components: 

word alignment, block selection, and decoding. 

2.1. Word Alignment 

 

We obtain word alignment between the source and the 

target language sentences by successive application of 

IBM Model 1 viterbi alignment for initialization and 

iterative HMM-based alignment,  [8], for refinement.   

We align a parallel corpus bi-directionally: one from 

the source language to the target language (A1: f → e) 

and  the other from the target language to the source 

language (A2: e → f), where f denotes a source word 

position and e a target word position.  We define 

precision (AP) and recall (AR) oriented alignments as 

follows: 

AP = A1 ∩ A2  

AR = A1 U A2 

 

AP is the intersection of A1 and A2, a high precision 

alignment. AR is the union of A1 and A2,  a high recall 

alignment.  The set of all source word positions covered 

by some word links in AP are denoted as col(AP).  

 

2.2. Block Selection 

 

Starting from a high precision word alignment AP, we 

obtain blocks according to (i) a projection algorithm and 

(ii) a block extension algorithm. 

Projection Algorithm: We first project source 

intervals [f´, f], where f´, f ∈  col(AP). We compute the 

minimum target index e´ and maximum target index e 

for the word links that fall into the interval [f´, f]: 

 

[f´, f] → [    min     e´,         max    e] 

 ]),([]),([ ffPeffPe ff ′∈′∈′  

 

Pf(·) projects source intervals into target intervals. The 

pair ([f´, f], [e´, e]) defines a block alignment link a.  

The block consisting of the target and source words at 

the link positions is denoted as b.  Target and source 

words in a block are subject to the contiguity condition.  

Extension Algorithm: We expand the alignment 

links to include alignment  points in the neighborhood of 

the high precision alignment AP and lie within the high 

recall alignment AR.  The extensions are carried out 

iteratively until no new alignment links from AR are 

added.   

Among the candidate blocks obtained according to 



 

 

the projection and extension algorithm, blocks satisfying 

the following three conditions are kept for use in 

translation: 

i. Source phrase ( f ) length ≤ 10 morphemes
1
 

ii. Target phrase ( e ) length ≤ 10 morphemes 

iii. Block (b) frequency > 1 
 

2.3. Decoding 
 

Two types of model parameters, block unigram model 

and word trigram language model, are used in the 

baseline decoder. Block unigram probability is defined 

in (1), where n is the number of distinct blocks:      
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Word trigram probability is computed at target phrase 

boundaries only, skipping over words within a target 

phrase in case the target phrase length ≥ 2. Trigram 

language model probability between adjacent target 

phrases is computed, as in (2). 

 

(2) ),|()|( 111 −− = hhii eeepeep  

 

ie  is the current target phrase, 1−ie  is the previous (one 

or more) target phrase in the hypothesis. e1 is the first 

word of ie
2
, eh  the last target word in the hypothesis 

and eh-1  the second to the last target word in the 

hypothesis. The task of the decoder is to find the block 

sequence that maximizes  the product of the unigram 

block probability and the trigram language model 

probability without reordering.  

In decoder implementation, we use a DP-based beam 

search procedure. We start with an initial empty 

hypothesis. We maximize over all block segmentations 

b1, n, where n is the number of blocks covering the input 

sentence, with the source phrases yielding a 

segmentation of the input sentence, generating the target 

sentence simultaneously. The decoder processes the 

input sentence ‘cardinality synchronously’, i.e. all partial 

hypotheses active at a given point cover the same 

number of input words.  We prune out weaker 

hypotheses based on the cost (for block unigram 

probability and trigram language model probability) they 

incurred so far. The cheapest final hypothesis − the 

hypothesis with the highest probability − with no un-

                                                           
1
 Morpheme is defined to be the minimal unit of meaning, and 

may or may not overlap with words, e.g. the Japanese object 

case marker を and English plural marker –s are a morpheme 

but not a word, whereas president in English これ `this’ in 

Japanese are both a morpheme and a word. 
2
 In case the length of ie  is 1, e1 is the same as ie . 

translated source words is the translation output.  

3. Performance Enhancing Techniques 

Performance evaluations are carried out on the C-STAR 

2003 development test data consisting of 506 segments 

for both Japanese-to-English (J2E hereafter) and 

Chinese-to-English (C2E hereafter) translations.  BLEU 

[9] has been used for translation quality evaluations, 

with 16 reference translations and the following 

evaluation parameters:  

• Case insensitive 

• Punctuations preserved 

 

Translation model (TM hereafter) and language model 

(LM hereafter) training corpora are specified in Table 1. 

 

Language TM data LM data 

J2E 20K sentence pair  

BTEC
3
 

380K word BTEC 

140M word ViaVoice 

C2E 20K sentence pair  

BTEC 

380K word BTEC 

4.9M word FBIS
4
 

 Table 1: Training corpora specifications 

 

Across all evaluation conditions, both TM and LM are 

trained on lowercased English with punctuations 

preserved.  

3.1.  Baseline system 

Baseline system performances are given in Table 2. 

 

Languages J2E C2E 

Baseline 0.2924 0.2664 

 Table 2: Baseline system performances 

 

The key properties of  the baseline system include (i) 

block selection from  high precision word alignments 

using the projection and the extension algorithm, (ii) 

monotone decoding using block unigram probability, 

and word trigram language model probability at target 

phrase boundaries only. 

3.2. Block selection from high recall alignment 

We have found it effective to select blocks from high 

recall word alignments according to the projection 

algorithm and then filter out blocks which do not satisfy 

a length ratio between the source and the target phrase. 

 

3.2.1. Chinese-to-English 

 

Filter out blocks if they satisfy the condition (3): 

                                                           
3
  Basic Traveler’s Expression Corpus distributed for the 

supplied data track training. 

4  English-Chinese parallel corpus distributed by Foreign 

Broadcast Information Service. 



 

 

 

(3) target phrase length  ≥  source phrase length * 2.5 

Target and source phrase length ratio − 2.5 in (3) − is 

determined empirically.  We start with a value higher 

than the source and target sentence length ratio (1.03 in 

our training corpus) and increase the value until the 

system finds the optimal value.    

3.2.2. Japanese-to-English  

Block selection for Japanese-to-English translation takes 

place in three steps: Step 1 − Morphological analysis as 

a preprocessing to TM training, [7].  Step 2 − Block 

selection from high recall word alignments & filtering 

according to the source and target length ratio.  Step 3 − 

Merge blocks with the same source phrase to be 

translated into punctuations . and  ?.  

Morphological analysis: Japanese overtly marks the 

sentence types using sentence particles, as in (4) and (5):  

 

(4)  革 見本 を みせ て いただけ ます かかかか 。 

       Can you show me leather samples ? 

(5)  毒虫 に 刺さ れ まし たたたた 。 
   I was stung by a poisonous insect . 

 

The question sentence (4) is marked by the particle か 

and the statement (5) by the particle た. As shown in (5), 

the role played by a sentence particle is often repeated 

by a punctuation (。 ). We delete  sentence particles 

including う, ね, が, た, の, わ before TM training.  The 

morphemes undergoing deletion analysis are typically 

those with a high null word translation probability. 

Block selection and filtering: We obtain word 

alignments between English and morphologically 

analyzed Japanese parallel corpus.  We apply the 

projection algorithm to high recall word alignments  and 

filter out blocks satisfying the condition (6). 

 

(6) target phrase length > source phrase length * 1.5 

 

The value for the target and source phrase length ratio − 

1.5 in (6) − is determined empirically in the manner 

described for C2E translation.   

Merge blocks with fixed translations: We merge 

blocks containing source phrases  to be translated into 

the question marker “?” and the period “.” to insure that  

these source phrases are always correctly translated. 

Performance improvement by block selection from  

high recall word alignments and filtering is shown in 

Table 3. 

Languages J2E C2E 

Baseline 0.2924 0.2664 

Union + Filtering 0.3249 0.2895 

Table 3. Impact of block selection from high recall word 

alignments and filtering 

3.3. Reordering and block combination 

Japanese and English word orders display a high degree 

of distortion primarily because the Japanese default 

word order is subject-object-verb whereas the English 

default word order is subject-verb-object, as in (7). 

 

(7)  [ジャケット を]object [探し て い ます]verb 。 
         I’m  looking  for  a  jacket. 
 

We also observe word order discrepancies between 

Chinese and English questions, as indicated by the 

underlines in (8). 

 

(8)  日本 航空 公司 的 柜台   在在在在 哪里哪里哪里哪里 ？ 

          Japan airline               counter  is   where 
          Where   is  the  Japan  airline  counter? 
 

We identify words and phrases that indicate a high 

degree of distortion between the source and the target 

sentences, for example,  by viterbi alignment.  We then 

reorder the source language sentence into the target 

language word order, as in (9) and (10): 

 

(9) [ジャケット を]object [探し て い ます]verb 。  →  [探し て い ます]verb   [ジャケット を]object     。 
(10) 日本 航空 公司 的 柜台   在在在在 哪里哪里哪里哪里 ？  →   哪里哪里哪里哪里    在在在在 日本 航空 公司 的 柜台？  

With reordering of source language sentences, we 

obtain two sets of parallel corpora: one in which no 

reordering is applied, and the other in which reordering 

is applied to the source language corpus.  We acquire 

two sets of blocks from the two sets of parallel training 

corpora.  We combine the two sets of blocks and 

recompute the block unigram probabilities. 

Performance improvement by reordering and block 

combination is shown in Table 4. 

 

Languages J2E C2E 

Baseline 0.2924 0.2664 

Union + Filtering 0.3249 0.2895 

Reorder+Combine  blocks 0.3460 0.2957 

  Table 4: Impact of reordering and block combination 

 

We conjecture that the performance improvement by 

reordering and block combination is partially due to 

improvement in HMM word alignment. As pointed out 

in [8], HMM alignment is good at capturing local 

distortion whereas  distortion models in the IBM source 



 

 

channel models are better at capturing long distance 

distortion. Reordering source language sentences into 

the target language word order results in either 

monotone alignment or local distortion between the 

source and the target languages. 

3.4.   Chinese unknown word segmentation 

We derive a list of Chinese vocabulary and word 

bigrams from the word segmented Chinese training 

corpus. We apply unknown word segmentation as 

follows:  

For each word w in the input, check to see if w 

occurs in the vocabulary list.  If w does not occur in the 

vocabulary list, compute all possible segmentations of w 

at each character position.  For example, if w consists of 

three characters C1C2C3, then there are four possible 

segmentations. 

 

Segmentation 1:   C1C2C3 

Segmentation 2:   C1C2   C3 

Segmentation 3:   C1   C2C3 

Segmentation 4:   C1   C2   C3 

 

For each segmentation, check to see if each two sub-

word sequence occurs in the bigram list. 

 

i. Select the segmentation with the least number of sub-

words not covered by bigrams.  Suppose Segmentation 2 

and Segmentation 4 contain bigram sequences as shown 

below, where the italicized boldface indicates bigrams 

seen in the training corpus: 

 

Segmentation 2:    C1C2    C3 

Segmentation 4:    C1   C2   C3 

 

All sub-words in Segmentation 2 are covered by 

bigrams, whereas C3 is not covered by a bigram in 

Segmentation 4.  Therefore, Segmentation 2 is selected.  

 

ii. If more than one segmentation is equally covered by 

bigrams, select the segmentation with the least number 

of sub-words.   Suppose Segmentation 2 and 

Segmentation 4 are covered by bigrams as shown below: 

 

Segmentation 2:  C1C2   C3 

Segmentation 4:  C1   C2   C3 

Segmentation 2 is chosen in this case since it contains 

two sub-words, whereas Segmentation 4 contains 3 sub-

words.  

iii. If more than one segmentation is equally covered by 

bigrams and contain the same number of sub-words, the 

segmentation with the most number of characters in the 

first sub-word is selected. Suppose Segmentation 2 and 

Segmentation 3, as shown below: 
 

Segmentation 2:   C1C2   C3 

Segmentation 3:   C1   C2C3 

 

Since the first sub-word in Segmentation 2 contains 2 

characters and the first sub-word in Segmentation 3 

contains 1 character, Segmentation 2 is selected.
5
  

Performance improvement by unknown word 

segmentation is shown in Table 5. 

 

Languages C2E 

Baseline 0.2664 

Union + Filtering 0.2895 

Reorder + Combine phrases 0.2957 

Unknownword segmentation 0.3111 

      Table 5: Impact of unknown word segmentation 

3.5. Skip operation in decoding 

We adopt skip operation for non-monotone decoding, 

[12], to capture the word order variations between the 

source and the target languages. 

Skip is applied to delay translating one or more 

source phrases in case the current target phrase should 

be placed after subsequent target phrases to generate an 

accurate target sentence word order. We explain the 

intuition using the example (7): 

 

(7)  [ジャケット を]object [探し て い ます]verb 。 
         I’m  looking  for  a  jacket. 
 

Suppose there are two blocks shown in (11) and (12), 

which cover the entire source word sequence. 

 

(11) a  jacket  |  ジャケット を 
(12) I´m looking for  |  探し て い ます    
 

To decode the sentence (7), the system selects the blocks 

(11) and (12).  If the system processes the blocks (11) 

and (12) monotonically, it will produce an inaccurate 

translation output “a jacket I´m looking for .” On the 

other hand, if the system skips to process the block (11) 

until after it processes (12) and translates 探し て い ます first, it will produce an accurate translation output 

“I´m looking for a jacket.”  

We impose two sets of constraints on skip, stated in 

(13) and (14), to prune out highly improbable word 

order sequences in advance. 

 

(13) Do not skip a block whose source phrase ends 

with a delimiter. 

                                                           
5  Conditions (i) to (iii) can be easily subsumed by 

incorporating language model probabilities derived from the 

training corpus, [10],  [11], for language model based word 

segmentation. 



 

 

(14) Do not skip across a block whose source 

phrase starts with a delimiter. 

 

Delimiters are a set of punctuations and function words 

across which word orders do not change.  Any source 

word occurring to the left of a delimiter should occur to 

the left of the (translation of the) delimiter in its 

translation.  Any source word occurring to the right of a 

delimiter should occur to the right of the (translation of 

the) delimiter in its translation. A set of delimiters we 

use include but not restricted to {. ?  , 。、か 吗}. 

Delimiters can be automatically acquired by identifying 

the source words for which there is no crossing between 

the words to their left and the words to their right in 

viterbi alignment for each language pair. 

 Performance improvement by skip is shown in 

Table 6.
6
 

 

Languages J2E C2E 

Baseline 0.2924 0.2664 

Union + Filtering 0.3249 0.2895 

Reorder+ Combine blocks 0.3460 0.2957 

Unknown word segmentation  0.3111 

Skip in decoding 0.4228 0.3470 

          Table 6: Impact of skip operation in decoding 

3.6. Language model probability computation 

Instead of computing trigram language model 

probabilities only for words occurring at target phrase 

boundaries, we compute LM probabilities for each word 

in a target phrase, as schematically shown in (15). 

 

(15)  cbaeep ii **)( 1| =−  

a. First word of ie : )( 1,|1 −hh eeep  

b. Second word of ie : α*),|( 12 heeep  

c. Subsequent words of ie : α*),|( 21 −− jjj eeep  

 

ie  is the current target phrase for which the LM 

probability is computed. 1−ie  is the target word 

sequence in the translation hypothesis. eh is the last word 

in 1−ie .  eh-1 is the second to the last word in 1−ie . e1  

and e2 are the first and the second word of ie , 

respectively.  ej is the j
th

 word in ie , where j > 2. LM 

score for e1 and ej  (j > 1) may be differentiated by 

different weights denoted as α in (15b, c).  The value for 

α may be parameterized for different language pairs.
7
 

                                                           
6
 With skip operation, application of reordering to Japanese 

input does not yield a better performance than without 

reordering. The BLEU scores for Japanese-to-English 

translation in Tables 6 and 7 are obtained from the Japanese 

input without reordering. 
7
 We have set α to 1 for Japanese-to-English and 1.21 for 

Chinese-to-English translation in the LM cost formula where 

Once we compute the LM probability for each word 

in a target phrase, the system tends to generate less 

words than when we compute the LM probability for 

words at phrase boundaries only. We offset this side 

effect by adjusting the word generation penalty, [13], so 

that the system produces more words in the translation 

output without losing accuracy.  

Performance improvement by the refined LM 

probability computation and word generation penalty is 

shown in Table 7. 

 

Languages J2E C2E 

Baseline 0.2924 0.2664 

Union + Filtering 0.3249 0.2895 

Reorder + Combine blocks 0.3460 0.2957 

Unknown word segmentation  0.3111 

Skip operation 0.4228 0.3470 

LM+word generation penalty 0.4307 0.3728 

Table 7. Impact of refined LM probability computation 

3.7.  Correlation between block selection and skip  

While the experimental results in previous sections 

indicate that improvements in block selection and 

decoding techniques improve the translation quality 

independent of each other, there is an indication that the 

performance improvement by skip correlates with 

various block selection techniques.  

Table 8 shows the apparent correlation in 

performance improvement by skip according to various 

block selection techniques for Japanese-to-English 

translation. 

 

Block 

selection 

Intersection 

+Extension 

Union Union+Filtering+ 

Reorder+Combine 

Baseline 

decoding 

0.2924 0.3100 0.3460 

Skip 0.3181 

+8.8% 

0.3513 

+13.3% 

0.4228 

+22.2% 

Refined 

LM  

0.3525 

+10.8% 

0.3763 

+7.1% 

0.4307 

+1.9% 

Table 8. Performance improvement by skip according to 

various block selection techniques 

 

Block selection from intersection − high precision word 

alignment − according to the extension algorithm is used 

in our baseline system.  Block selection from union − 

high recall word alignment − results in a performance 

improvement over the baseline (BLEU score 

improvement from 0.2924 to 0.3100).  Combining 

blocks derived from reordered and un-reordered training 

corpora using high recall word alignment (union) and 

filtering results in the best performance with the baseline 

decoding (BLEU score 0.3460).  

                                                                                            
the LM probability is represented as a cost using sum of –log 

likelihood.  



 

 

Performance improvement by skip is most significant 

with the block selection technique which results in the 

highest BLEU score, i.e. 22.2% improvement.  We posit 

that a good block selection technique is more likely to 

generate blocks whose source phrases coincide with 

natural units for reordering, e.g. the object  ジャケット を and the verbs 探し て い ます in (7), accounting 

for the significant performance improvement by skip. 

However, performance improvement by the refined 

LM probability is least significant with the block 

selection which results in the highest BLEU score, i.e. 

1.9% improvement.  We attribute this to an overlap in 

roles played by LM probability and other constraints on 

block selection.  LM probability computation of each 

word in a target phrase is equivalent to filtering out 

some candidate blocks whose target phrase LM 

probabilities are less likely than others.  

4. Spoken language translation evaluation 

We address issues to be worked out before adopting an 

automatic evaluation metric as a single means of 

conversational speech translation evaluation: (i) 

characteristics of spoken language dialogs which 

typically do not occur in written texts, and yet 

significantly contribute to the information content of the 

entire utterance and (ii) lack of correlation between 

human and automatic evaluations. All examples in this 

section are taken from the BTEC training corpus. 

 

4.1. Characteristics of spoken language dialogs 

 

Speech Act: Spoken language dialogs crucially depend 

on speech acts for successful communications such as 

questions, requests, suggestions as well as statements, 

[17], [18], [20]. For instance, out of 20k segments in the 

BTEC training corpus for Japanese-to-English 

translation, 7,438 segments contain questions (denoted 

by the question marker ?), and at least 1,775 segments 

contain requests (denoted by the phrase please).  

Examples are given in  (16)−(19). 

 

(16)  To the zoo ? 

(17)  This row empty ? 

(18)  And the number and name of the person you are 

calling ? 

(19)  A seat in the back, please. 

 

The fact that (16)−(18) are questions – as opposed to a 

statement, as in “I would like to go to the zoo.” – can be 

construed only by the question mark “?”.
8
 The fact that 

                                                           
8  Speech acts are often denoted by sentence particles in 

Japanese such as  か for  a question,う for a proposal , た for 

a statement, as well as a phrase ください for a request. 

(19) is a request (as opposed to a question, as in “Do 

you have a seat in the back?”) can be construed by the 

function word “please”.  

Negation: Spoken language dialogs often center 

around the notion of affirmation/negation, especially if 

the utterances are expressed by yes–no questions.  Out 

of 20k segments in the BTEC training corpus for 

Japanese-to-English translation, 329 segments contain 

some form of negation, as shown in (20)–(23). 

 

(20)  I ca n't have dessert, really . 

(21)  No, I just got here . 

(22)  Do n't take too much off the top . 

(23)  I do n't quite understand . 

 

Negation typically applies over the entire utterance, and 

incorrect translation of negation often leads to an 

interpretation opposite to what has been intended by the 

speaker.  

Examples (16)–(19) suggest that punctuations play a 

major role in an accurate interpretation of speech act in 

conversational speech translation, and therefore should 

be included as a legitimate vocabulary  in the evaluation.  

The real question is how much weight should be given to 

the information conveyed by speech act.  Speaking in 

terms of BLEU, is it sufficient to treat speech act as one 

more vocabulary item and subsume it under the modified 

precision and brevity penalty, or we need a third 

parameter − speech act − in the scoring formula and 

assign an appropriate weight? (20)–(23) indicate that 

information conveyed by negation is more significant 

than that conveyed by other lexical items.  Loss of 

negation in (23), as in “I do quite understand” is very 

likely to result in a communication failure, whereas loss 

of the adverb quite, as in “I don’t understand” is not. 

Given the significant role played by speech acts and 

negation, [19], it seems worthwhile to conduct 

experiments to precisely measure their impacts on 

overall translation quality and incorporate them to an 

automatic evaluation metric accordingly. 

 

4.2. Correlation between human and automatic 

evaluations 

 

Table 9 shows the ranks of our system (out of 9 

systems) submitted to the Chinese-to-English 

unrestricted data track.   

 

      Evaluation Methods            Ranks 

        Human−Fluency                4 

     Human−Adequacy                6 

               BLEU                3 

               GTM                2 

               NIST                3 

               PER                4 

               WER                3 



 

 

Table 9. Ranks of a system by various evaluation 

methods 

 

Human-Fluency and Human-Adequacy indicate human 

evaluation of translation fluency and  adequacy, 

respectively. BLEU, GTM, NIST, PER and WER are 5 

automatic evaluation metrics used in the evaluation. 

Apparently, automatic evaluations and Human-

Adequacy judgment do not correlate, contrary to what 

has been reported in previous studies, [9] for BLEU,  

[14] for GTM, [15] for NIST, where they all report a 

strong correlation between automatic and human 

evaluations. The lack of correlation between human 

adequacy judgment and automatic evaluations might be 

attributed largely to two factors: One to different genre 

material and the other to different evaluation 

parameters.  

Genre: The current evaluation focuses on spoken 

dialogs consisting of short sentences (8.7 

words/sentence on average for Japanese and 7.6 

words/sentence on average for Chinese) with many 

variations in dialog acts (e.g. question, statement, 

request, etc.), whereas the previous studies focus mainly 

on written news texts.  

Evaluation Parameters: The current evaluation 

evaluates all lowercased translation output without any 

punctuations. In addition, part-of-speech tagging is 

applied to automatic evaluations but not to human 

evaluations. 9  However, previous studies – reporting a 

strong correlation between automatic and human 

evaluations – base their studies on translation output and 

reference translations where both punctuations and 

upper/lowercase distinctions are preserved. We have 

pointed out in Section 4.1 the potential significance of 

punctuations in conversational speech translation. [15] 

reports that upper/lower case distinction needs to be 

preserved in order for automatic evaluations to correlate 

with human evaluations. Furthermore, none of the 

previous studies have applied part-of-speech tagging in 

automatic evaluations. 

Setting all evaluation parameters the same for the 

current evaluation as previous studies would shed light 

on the cause for the lack of correlation between human 

and automatic evaluations. If it turns out that human 

evaluations still do not correlate with automatic 

evaluations even after setting all evaluation parameters 

the same, it would indicate that conversational speech 

translations require a new evaluation metric to 

adequately capture the characteristics of spoken 

language dialogs not present in written texts. 

 

4.3. Correlation across automatic evaluations 

 

                                                           
9
 This information is due to personal communications with 

Michael Paul. 

Table 10 shows some of our automatic evaluation 

scores of Chinese-to-English translations. 

 

 

 

 System  BLEU GTM NIST 

  C2E_1 0.3619 0.6819 7.3512 

  C2E_2 0.3464 0.6719 7.2893 

  C2E_3 0.3289 0.6933 7.9626 

Table 10: Chinese-to-English automatic evaluation 

scores 

 

BLEU and GTM/NIST scores do not correlate with 

each other. BLEU score is the highest for the system 

C2E_1, whereas GTM/NIST scores are the highest for 

the system C2E_3. Our experiments on C-STAR 2003 

development test set show that BLEU score difference 

of about 0.03 is statistically significant at 95% 

confidence interval, indicating that the BLEU score 

difference of 0.033 between C2E_1 (0.3619) and 

C2E_3 (0.3289) is very likely to be statistically 

significant.10  

With the caveat that the evaluation parameters are 

different for the current evaluations from previous 

studies, the scores in Table 10 suggest that some 

automatic evaluation metric should fit better for spoken 

language translation evaluation than others. Note that 

BLEU, GTM and NIST all incorporate the notion of 

precision and the length ratio between the translation 

output and the reference translation into their scoring 

formula.  BLEU and GTM crucially differ in the way 

how length ratio is computed. Brevity penalty (BP) 

plays a less significant role than precision in BLEU 

whereas recall plays an equally important role as 

precision in GTM. Spoken language translation 

evaluation could serve as a test bed for differentiating 

the fitness of some version of length ratio to the overall 

translation evaluation task, which is not easily 

distinguishable in an evaluation of written news texts.11 

5. Future Work 

Recent success in machine translation of texts with the 

adoption of automatic evaluation metric BLEU indicates 

that a good evaluation metric correlating well with 

human judgments drives the machine translation 

technology development.  

To come up with a good spoken language translation 

evaluation metric, however, there are at least two major 

                                                           
10

 [Paul et al. 2004] also show the lack of correlation between 

BLEU and NIST scores of the systems evaluated in C-STAR 

spoken language translation evaluation in 2003. 
11

 According to [Melamed et al. 2003], BLEU and GTM both 

correlate well with human adequacy judgments on documents 

of more than 10 segments with more than 1 reference 

translation. 



 

 

issues to be worked out. First, we need to figure out 

what is the correct format of the reference translations to 

be used by human assessors. A good first approximation 

might be the format consistent with human transcriptions 

of speech. Second, we need to factor out characteristics 

of spoken language not present in written texts and 

decide whether or not these need to be introduced as  

independent parameters in the evaluation metric.  

We believe that the notion of precision and brevity 

penalty in  BLEU are applicable to all types of machine 

translation quality evaluations, and should serve as the 

baseline parameters for an improved spoken language 

translation evaluation metric which will drive a rapid 

improvement of the technology. 
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