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Abstract 

We discuss performance enhancing techniques we have 

developed for the IWSLT 2005 Evaluation Campaign: 

(i) a phrase acquisition technique which expands the 

phrase boundaries to include target words aligned to null 

source words in a principled manner, and (ii) a system 

combination technique which selects the minimum cost 

translation output out of many translation outputs of the 

same input segment produced by various systems using 

different phrase translation lexicons. We also discuss 

IBM system performances in the Arabic to English and 

Chinese to English  translation evaluations of the 

IWSLT 2005 evaluation campaign. 
 

1. Introduction 

IBM spoken language translation system is based on a 

statistical translation model introduced in [1].  We adopt 

a phrase translation model as the baseline, [2], [3], [4], 

[5], [6]. We improve the baseline system performance 

by  an extended phrase selection algorithm and a novel 

system combination technique.   

The baseline phrase selection algorithm, cf.  Section 

2.1, is augmented by a technique which expands a target 

phrase to include target words typically aligned to null 

source words in the neighborhood of a high precision 

word alignment (and possibly a target words with an 

explicit alignment link next to it).  The expanded phrase 

expansion algorithm is effective for language pairs in 

which one source word should be aligned to many target 

words in principle.   

For system combination, we produce translation 

outputs of the same input segment with various systems, 

which use different phrase translation lexicons. Then we 

select the output with the minimum translation cost.  The 

idea behind is to capitalize on the strength of each 

phrase translation lexicon even though the system using 

one particular lexicon may generally result in the highest 

translation quality. For instance, a phrase translation 

lexicon derived from a small domain-specific training 

corpus might produce a higher translation quality on the 

evaluation corpus from the same domain than a lexicon 

derived from a large domain neutral training corpus. 

And yet, there can be some segments of the evaluation 

corpus which are better translated by the large domain 

neutral lexicon than by the small domain-specific 

lexicon. If some rare words in the small domain-specific 

corpus occur frequently in the large domain neutral 

corpus, they are likely to be better translated by the 

system using the large lexicon than by the system using 

the small domain-specific lexicon. 

In Section 2, we give an overview of the baseline 

phrase translation system.  In Section 3, we discuss the 

extended phrase extension algorithm and the system 

combination technique.  In Section 4, we show the 

impact of various techniques on Arabic to English and 

Chinese to English translations.  Finally in Section 5, we 

discuss our ongoing work.  

Throughout this paper, we use the term block (b) to 

denote a phrase translation pair consisting of a source 

( f ) and a target phrase ( e ).   

 

2.  Baseline Phrase Translation System  

 
We discuss the acquisition of phrase translation lexicon 

and the phrase decoder below, which have been 

developed for  Spanish-English translations under the 

project TC-STAR. 

 

2.1.  Acquisition of Phrase Translation Lexicon  

 

Phrase translation lexicon is obtained via word 

alignment and block selection algorithms.  

We obtain word alignment between source and  
target language sentences by application of HMM 

alignments [8]. We word-align a parallel corpus bi-

directionally: one from a source word position to a 

target word position, (A1: f → e) and  the other from a 

target word position to a source word position (A2: e → 

f), where f denotes a source word position and e a target 

word position.  We define precision (AP) and recall (AR) 

oriented alignments as follows: 

 

AP = A1 ∩ A2  

AR = A1 U A2 

 

AP is the intersection of A1 and A2, a high precision 

alignment. AR is the union of A1 and A2,  a high recall 

alignment.  The set of all source word positions covered 



by some word links in A are denoted as col(A). 

Starting from a high precision word alignment AP, 

we obtain blocks according to the projection and 

extension algorithms [5]. Projection Algorithm: We 

first identify source intervals [f, f´], where f, f´∈  col(AP). 

Then we compute the minimum target index e and the 

maximum target index e´ for the word links that fall in 

the interval [f, f´]: 

 

        [f, f´]     →      [ min     e,         max    e´] 
             ]),([]),([ ffPeffPe ff ′∈′′∈  

 

Pf(·) denotes the projection from source intervals into 

target intervals.  The block consisting of the target and 

source words at the link positions is denoted as b. 

Extension Algorithm: We expand the alignment links 

to include alignment  points in the neighborhood of the 

high precision alignment AP and lie within the high 

recall alignment AR.  The extensions are carried out 

iteratively until no new alignment links from AR are 

added. See [5] for the details of the extension algorithm. 

Once the blocks are collected according to the 

projection and the extension algorithms, one-one blocks 

consisting of one source word and one target word are 

further derived from the word alignment A2, which 

aligns from a target word position to a source word 

position. In addition, blocks containing non-consecutive 

source word sequence are filtered out. 
 

2.2.  Decoding 
 

Our phrase decoder utilizes 10 distinct scoring functions 

(listed below) multiplied by their respective weight: 

 

• Direct phrase translation model cost 

• Source-channel phrase translation model cost 

• Unigram phrase translation model cost 

• IBM Model 1 cost applied in both directions 

• Language model cost at phrase boundaries  

• Language model cost within a phrase 

• Word & block count penalties 

• Outbound and inbound distortion model costs 

 

Direct phrase translation model probabilities are 

obtained according to (1). 

 

(1)  p ( e | f ) = 

∑ ′
′

e
fecount

fecount

),(

),(  

 

Source-channel model probabilities are computed, 

according to (2). 

 

(2)  p ( f | e ) = 
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Unigram translation probability of a block (b = fe , ), 

is obtained according to  (3): 
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IBM Model 1 translation cost is computed for each 

phrase, as in (4): 
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j is the source word position index (m is the number of 

source words in the source phrase). i is the target word 

position index (n is the number of target words in the 

target phrase). If max p( fj | ei ) is 0.0, and therefore  

–log10 max p(fj | ei) is infinite, we assign a fixed cost β 

for fj, which is empirically determined on the basis of 

training corpus size and the properties of  the given 

language pair. For the current evaluations, we set the 

value of β from 3.5 to 5.0. Model 1 translation 

probability )|( ij efp is computed by the relative 

frequency of one-one blocks (i.e. blocks consisting of 

one source word and one target word), as in (5). 
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Trigram language model probabilities are obtained for 

each word in the target phrase ( e ), according to (6). 

 

(6)   p (ei | ei-1, ei-2)  

 

Weight assigned to the word trigram language model 

probability may be set differently for the first word e1 

and the remaining word ei (1 < i < n, n: number of words 

in the target phrase).  

Word and block count penalties are applied to ensure 

that the decoder does not always choose the shortest 

translation output and the longest matching source 

phrase, respectively, analogous to those in [13]. Word 

level distortion models in [21] are incorporated into the 

decoder, as well. 

3. Performance Enhancing Techniques 

We now discuss two core performance enhancing 

techniques: extended block extension algorithm and 

system combination. 

 

3.1.  Extended Block Extension Algorithm 

 



We have extended the block extension algorithm in 2.1 

to capture the asymmetrical properties of word and 

sentence structures often present between the source and 

target languages.  

Given the Arabic sentence in Buckwalter 

transliteration (7a) and its English translation (7b), we 

typically obtain the word alignment in (8), where the 

target words i, do, it are not aligned to any source 

words: 

 

(7)  a.  lA Aryd AzAlthA .  

b.  i do n't want it extracted .  

 

(8)  lA <==> n't 

Aryd <==> want 

AzAlthA <==> extracted 

. <==> . 

 

Similarly, given the Chinese sentence (9a) and its 

English translation (9b),  we typically obtain a word 

alignment, as in (10), where the target words is and the 

are not aligned to any source words: 

 

(9) a. 早餐 多少 钱 ？  

    b.   how much is the breakfast ?  
 

(10) 早餐 <==> breakfast 多少 <==> how 钱 <==> much ？ <==> ? 

 

Since the missing word alignment, as in (8) and (10), is 

due to intrinsic asymmetries between the source and the 

target language grammars, rather than deficiencies of 

word alignment itself, we incorporate these asymmetries 

into the block extension algorithm as follows: First, we 

collect the list of target words typically aligned to a null 

source word, e.g. i, it, do in Arabic-English, and is, the 

in Chinese-English, and call them expansion word list. 

Second, in applying the block extension algorithm, if a 

target word is included in the expansion word list, and  

occurs in the neighborhood of high precision word 

alignment AP, we extend the target phrase to include the 

expansion word even  if there is no alignment link 

between the target and any source word positions in 

either alignment direction.  (11) shows the expansion 

word list we used for Arabic to English translation 

without word segmentation into morphemes, and (12) is 

the expansion word list for Arabic to English translation 

with morphological analysis  [7]. 

 

(11) i, you, is, to, are, am, do, does, it, 's, 'll, 'm, 're, a, 

an, the, and, will, 'd, be, me, him, her, them, us, my, 

your, his, her, their, its, our, mine, yours, hers, theirs, 

ours, two, for, with, been 

 

(12) i, you, is, to, are, am, do, does, it, 's, 've, 'll, n't, 'm, 

're, 'd, be, your, my, two, any, some, we, they, the, been, 

and,  for, with, that, would, his, her, most 

 

We also extend the block extension algorithm to include 

a target word if the target word position is aligned to a 

source word position by an intersection relation, and is 

adjacent to another target word position with no 

alignment link. The extended block extension algorithm 

enables us to obtain two more blocks (b) and (c) 

extended from the seed block (a) in Figure 1. 

 
Figure 1. Blocks acquired by the Extended Block 

Extension Algorithm 

 

In Figure 1, solid circles denote the word link by an 

intersection relation, and the grey circle denotes a target 

word without an alignment link in the neighborhood of 

the seed block at a possible extension point.  s1…s4 

denote source word positions, and t1…t5 target word 

positions. The seed block (a) is obtained from the high 

precision alignment AP. The extended block extension 

algorithm allows the target phrase to be extended to 

include the null link target word t3, leading to the 

extended block (b). By a recursive application of the 

block extension algorithm, we further obtain the 

extended block (c), containing the sequence of target 

words without and with an alignment link.  

 

3.2.  System Combination 

 

A  procedure for system combination is given below: 

 

Step 1: Build various types of phrase translation 

lexicons, which may vary according to their vocabulary 

coverage and/or phrase selection algorithms. 

 

Step 2:  Translate the same segment (roughly equivalent 

to a sentence) and compute its translation cost with 

systems using each of the lexicons acquired in Step 1. 

 

Step 3:  Compare the translation costs attributed to 

systems using each of the phrase translation lexicons and 
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choose the translation output of the system which results 

in the minimum cost according to the algorithms in 

Section 3.3.3. 

An example of two phrase translation lexicons differing 

from each other in terms of vocabulary coverage in Step 

1 would be (i) one built from a small domain-specific 

training corpus, and (ii) the other built from a large 

domain-neutral training corpus.  Another example from 

Chinese to English translation can be (i) one built from 

character-segmented Chinese corpus, and (ii) the other 

built from a word-segmented Chinese corpus. Two 

phrase translation lexicons can also differ from each 

other in terms of distinct algorithms by which each of 

the lexicons are derived even if the training corpus is the 

same. 

Below we discuss system combinations for Arabic to 

English and Chinese to English translations. 

 

3.3.1.  Arabic to English Translation 

 

An Arabic word typically corresponds to more than one 

English word.  For instance, an Arabic word AlAHmr 

corresponds to two English words the red, and 

llmEArDp to three English words of the opposition.  

This rich morphology of Arabic induces a data 

sparseness problem. A way of overcoming the data 

sparseness problem using the same training corpus is to 

segment an Arabic word into a morpheme sequence of 

prefix-stem-suffix, as described in [11], e.g. llmEArDp 

→ l l mEArD p, so that an Arabic morpheme roughly 

corresponds to an English word.  We can accomplish  an 

even stronger morphological symmetry between an 

Arabic morpheme and an English word by merging an 

Arabic prefix/suffix into its stem or deleting  a 

prefix/suffix, e.g. l l mEArD p → l l mEArDp, so-called 

morphological analysis  [7].  

On the basis of the observation above, we derive 

three kinds of phrase translation lexicons from three 

different types of word alignments, differentiated by 

Arabic corpus processing, as in (13): 

 

(13) a.  Un-segmented Arabic 

        b.  Word-segmented Arabic (prefix-stem-suffix) 

        c.  Morphologically analyzed Arabic 

 

The English corpus is uniformly punctuation tokenized 

for all three types of word alignments.  OOV ratio of 

various evaluation corpora on the three phrase 

translation lexicons (derived from the 20K sentence 

pairs for the supplied data track) is shown in Table 1. 

 

Arabic  corpus IWSLT05 IWSLT04 CSTAR03 

 5.0 % 4.68 % 4.58 % un- 

segmented  159/3164 151/3226  144/3146 

 1.4 % 1.1 % 1.35 % word-

segmented    59/4747   53/4774    62/4594 

 2.1 % 2.1 % 2.14 % morphological 

analysis  83/3914 83/3940  82/3837 

       Table 1.  OOV ratio of  various phrase lexicons 

For the unrestricted data condition,  we additionally 

apply the system combination to a system using a phrase 

translation lexicon derived from a large training corpus 

containing both the domain specific and out-of-domain 

corpora. Table 2 shows the OOV ratio of the phrase 

translation lexicons  derived from 20K sentence pair 

supplied training corpus and 143,253 sentence pair 

unrestricted training corpus with un-segmented Arabic, 

which contains both the supplied data and LDC-

distributed Arabic-English news and multiple translation 

corpora. 

 

corpus size IWSLT05 IWSLT04 CSTAR03 

5.0 % 4.68 % 4.58 % 20K supplied 

 159/3164 151/3226 144/3144 

2.21 % 2.08 % 2.04 % 143K 

unrestricted   70/3164   67/3226   64/3144 

Table 2. OOV ratio of lexicons derived from domain-

specific and domain-neutral training corpora 

 

3.3.2.  Chinese to English Translation 

 

Analogous to Arabic to English translation,  we perform 

system combination across phrase translation lexicons of 

varying vocabulary coverage, derived from word 

alignments differentiated by Chinese corpus processing, 

as in (14): 

 

(14) a.  Word-segmented Chinese 

b.  Character-segmented Chinese 

 

For Chinese word segmentation (14a), we use a 

language model-based Chinese word segmentation 

system [10], trained on the 20K supplied data corpus 

distributed for IWSLT 2004 evaluations. For character 

segmentation of Chinese, we segment the corpus at each 

character position.  OOV ratio of  evaluation corpora on 

the lexicons derived from word- and character-

segmented Chinese are shown in Table 3. 

 

Chinese corpus IWSLT05 IWSLT04 CSTAR03 

    2.15 %     2.12 %    2.9 % word- 

segmented    82/3822   76/3578  102/3510 

    0.51 %     0.19 %   0.55% character- 

segmented    26/5128     9/4749    26/4715 

Table 3. OOV ratio of lexicons derived from word- and 

character-segmented Chinese corpora 

  

We also apply reordering rules, (15), (24), to word- 

and character-segmented Chinese, resulting in lexicons 

of different translation qualities but with the same 

vocabulary coverage. We apply the system combination 



to systems using lexicons derived from re-ordered and 

un-reordered Chinese corpora [23].  

 

 

(15)  Chinese re-ordering rules 

 

a.  Word re-ordering:  Identify Chinese question words 

corresponding to English where, which, who, when, 

how, what, why in a Chinese question sentence.  Move 

the Chinese word sequence starting from the question 

word to the one before the sentence ending markers (了, 吗,？) to the beginning of the sentence. 

 

b. Character re-ordering:  Move the last three characters 

of a Chinese question sentence excluding the sentence 

ending markers (了, 吗,？ ) to the beginning of the 

sentence in the same order. 

 

3.3.3.  System Combination Algorithm 

 

We first determine the system using the phrase 

translation lexicon which generally results in the highest 

translation quality  measured by BLEU [9].  We call the 

system producing the highest translation quality h-sys, 

and the systems producing the lower translation 

qualities, l-sys1, l-sys2, …, l-sysn .  Other notations are 

given below: 

 

• cost(system): translation cost of the system output 

computed by the system’s decoder 

• tarlen(system):  target length produced by the 

system’s decoder 

• srclen(system): input segment length to be 

translated by the system 

• oov(system): number of out-of-vocabulary of the 

input segment computed at each source word 

position on the basis of the system’s lexicon 

• output(system): system’s output 

 

System combination algorithms are given below: 

 

Arabic to English 

 

For each input segment of the evaluation corpus: 

 

if   cost(h-sys) > cost(l-sys1) + threshold_1 &  

     oov(h-sys) = 0  

     then  choose output(l-sys1) 

… 

else if   

     cost(h-sys) > cost(l-sysn) + threshold_n & 

     oov(h-sys) = 0,  

           then  choose output(l-sysn) 

else  

     choose output(h-sys) 

 

The algorithm states that if the translation cost of the 

highest-performing system h-sys is higher than that of a 

lower-performing system l-sysn by a specified threshold 

threshold_n,  then choose the translation output of l-sysn  

over that of h-sys. When there are more than one lower 

performing systems, i.e. n > 1 in l-sysn, the order in 

which the comparison is made with output(h-sys) is 

determined on the basis of the effectiveness of the 

system combination between h-sys and l-sysn, i.e. which 

two system combinations give rise to a higher BLEU 

score.  The more effective the system combination is, 

the earlier the comparison is made. Note that the output 

selection is greedy since once the selection is made, it is 

definite and the comparison for the given input segment 

stops. The values threshold_1, …, threshold_n, are 

manually set to those which result in the highest 

performance improvement, and typically vary according 

to the properties of two systems for which the 

comparisons are made. 

 

Chinese to English 

 

For each input segment in the evaluation corpus: 

 

if  cost(h-sys) > cost(l-sys1) + threshold_1 &  

    oov(h-sys) = 0 &  tarlen(l-sys1) > tarlen(h-sys) / 2 

    then choose output(l-sys1); 

… 

else if   

    cost(h-sys) > cost(l-sysn) + threshold_n & 

    oov(h-sys) = 0 & tarlen(l-sysn) > tarlen(h-sys) / 2  

    then choose output(l-sysn); 

else  

    choose output(h-sys); 

 

A major difference between Arabic to English and 

Chinese to English algorithms is the target output length 

imposed on Chinese to English translation. For Chinese 

to English, the tarlen(l-sysn) should be longer than half 

of the tarlen(h-sys) for output(l-sysn) to be selected.  

This is to counteract the decoder tendency of producing 

lower translation cost for excessively short translation 

output. 

We now point out a couple of issues that can be 

further improved. 

First, effectiveness of system combination largely 

depends on the value of threshold_n, which in turn 

depends on decoder parameter values. Currently, we 

learn this value by trying out several values whenever 

we change the decoder parameter setting. We are 

working to automatically identify the threshold values. 

Second, currently the order in which the cost 

comparison is made between two systems  is pre-

determined and the output selection is greedy.  We are 



trying to come up with a technique to select the 

minimum cost translation output on the basis of 

simultaneous comparisons of all systems to avoid 

incorrect greedy decisions.  

 

 

Languages Data tracks  BLEUr16n4      WER      PER      NIST   METEOR     GTM 

unrestricted      0.5996    0.3331   0.2939     9.7570     0.7261    0.6824 

supplied+tools      0.5604    0.3565   0.3086     9.5922     0.7117    0.6664 

A2E 

supplied      0.5384    0.3779   0.3363     8.6163     0.6887    0.6475 

unrestricted      0.4985    0.4337   0.3716     8.1719     0.6626    0.6103 

supplied+tools      0.4785    0.4450   0.3792     7.8783     0.6513    0.5966 

C2E 

supplied      0.4402    0.4692   0.3909     8.4357     0.6424    0.5878 

  Table 4. IBM Statistical Machine Translation System Performances in IWSLT 2005 

 

 

4. Performance Evaluations 

 
IBM system performances for Arabic to English (A2E) 

and Chinese to English (C2E) translations in the IWSLT 

2005 evaluation campaign are shown in Table 4, where 

the data tracks we focused on are written in bold. Below 

we discuss the training corpora and the impact of new 

techniques discussed in Section 3 in terms of translation 

quality measured by BLEU. 

 

4.1. Training corpora & tools 

 

Training corpora according to evaluation conditions are 

given in Tables 5 & 6, where TM stands for parallel 

translation model training corpora by sentence pair 

count, and LM for the English language model training 

corpora by word count. 

 

 Supplied Unrestricted 

TM 20k supplied 20k supplied 

500 IWSLT 04 development set 

~123k news (LDC) 

LM ~190k 

supplied 

~190k supplied 

~191k JE supplied/IWSLT 04 

~1 b English Gigaword (LDC) 

  Table 5.  Arabic to English training corpora  

 

For supplied data condition, we trained Arabic to 

English system on un-segmented Arabic, and Chinese to 

English system on character-segmented Chinese. For 

supplied+tools and unrestricted data conditions, we have 

used Arabic word segmenter and morphological 

analyzer for Arabic to English, and Chinese word 

segmenter for Chinese to English translations. 

 

 supplied unrestricted 

TM 20k supplied 20k supplied 

LM ~190k 

supplied 

~190k supplied 

~191k JE supplied/IWSLT 04 

           Table 6.  Chinese to English training corpora  

 

4.2. Impact of extended block extension algorithm 

 

 

Impact of extended block extension algorithm, cf. 

Section 3.1, on Arabic to English translation is shown in 

Tables 7 & 8, where the systems for supplied+tools 

condition are trained on morphologically analyzed 

Arabic corpus. 

 

 Old algorithm  New algorithm 

supplied 0.5503 0.5657 

supplied+tools 0.5448 0.6102 

Table 7. Impact of extended block extension algorithm 

on the A2E CSTAR 03 development test set 

 

 Old algorithm New algorithm 

supplied 0.5312 0.5460 

supplied+tools 0.5282 0.5723 

Table 8.  Impact of extended block extension algorithm 

on the A2E IWSLT 04 development test set 

 

Impact of the extended block extension algorithm on 

Chinese to English translation is  shown in Tables 9 & 

10, where the systems for supplied+tools condition is 

trained on word-segmented Chinese corpus. 

 

 Old algorithm New algorithm 

supplied 0.3343 0.3823 

supplied+tools 0.3606 0.4243 

Table 9. Impact of extended block extension algorithm 

on the C2E CSTAR 03 development test  set 

 

 Old algorithm New algorithm 

supplied 0.3608 0.4159 

supplied+tools 0.3930 0.4418 

Table 10. Impact of extended block extension algorithm  

on the C2E IWSLT 04 development test set 

 

4.3.  Impact of system combination 

 

For Arabic to English translation, the system using the 

phrase translation lexicon derived from a 



morphologically analyzed Arabic corpus results in the 

highest BLEU score. Therefore, we take the system 

using the lexicon derived from morphologically 

analyzed Arabic as h-sys, cf. Section 3.3.3. Impact of 

system combination on IWSLT 2005 Arabic to English 

translation evaluations is shown in Table 11. 

For the supplied+tools condition, two system outputs 

are combined: one using the lexicon derived from 

morphologically analyzed Arabic and the other using the 

lexicon derived from word-segmented Arabic. 

 

 supplied+tools    unrestricted 

Morph analysis         0.5541        0.5862 

Combination         0.5604        0.5996 

Table 11. Impact of system combination on IWSLT 05 

A2E evaluations 

 

For the unrestricted data condition, three system outputs 

are combined: (i) system using the lexicon derived from 

morphologically analyzed Arabic  and the supplied data, 

(ii) system using the lexicon derived from  word-

segmented Arabic and the supplied data, (iii) system 

using the lexicon derived from un-segmented Arabic and 

the unrestricted data.   

Contribution of each system in the unrestricted data 

condition is shown in Table 12. 

 

       Segments Selected Systems 

     Count  Ratio (%) 

Morphological analysis        292      57.7   

Word segmented        207      40.9   

Unsegmented            7        1.38 

Table 12.  System selection statistics in  IWSLT 05 A2E 

unrestricted data track 

 

Impact of system combination on Chinese to English 

translation is shown in Table 13. 

 

 supplied+tools  unrestricted 

Word segmentation        0.4682      0.4874 

Combination        0.4785      0.4985 

Table 13. Impact of system combination on IWSLT 05 

C2E evaluations 

 

For Chinese to English translation, a phrase translation 

lexicon derived from word-segmented and reordered 

Chinese results in the highest BLEU score. Therefore, 

we take the system using the lexicon derived from word 

segmented and reordered Chinese as h-sys, cf. Section 

3.3.3. For both supplied+tools and unrestricted data 

conditions, three systems are combined: (i) system using 

the lexicon derived from word-segmented and reordered 

Chinese, (ii) system using the lexicon derived from un-

reordered character-segmented Chinese, and (iii) system 

using the lexicon derived from reordered character-

segmented Chinese.   

Contribution of each system in the unrestricted data 

track is shown in Table 14. 

 

 

 

5. Summary and Ongoing Work 

 
We have discussed two key performance enhancing 

techniques we have newly developed for IWSLT 2005. 

 

   Segments Selected Systems 

  Count  Ratio (%) 

Word-segmented reordered     379      74.9 

Char-segmented un-reordered     116      22.92 

Char-segmented reordered       11        2.17 

Table 14. System selection statistics in IWSLT 05 C2E 

unrestricted data track 

 

First, extended phrase selection algorithm which enables 

the system to produce target phrases with null word 

alignment and its extension improves the performance 

statistically significantly on the CSTAR 03 and IWSLT 

04 development test data for both Arabic to English and 

Chinese to English translations.  Second, the system 

combination algorithm which combines the best 

translation output  from various phrase translation 

systems is effective for both Arabic to English and 

Chinese to English translations. This technique is also 

effective for improving domain-specific translation 

quality by adding out-of-domain training corpora, which 

has been a challenge, cf. IWSLT 2004 evaluation results 

for Chinese to English unrestricted data track and 

supplied data track. 

We are currently examining factors which cause the 

system combination algorithm to perform sub-optimally.  

This includes (i) automatic identification of threshold 

value for translation cost comparison, (ii) identification 

of parameters and features which have positive and 

negative impacts on system performances. We are also 

extending the system combination technique to other 

language pairs, e.g. English-Spanish, with a relatively 

large training corpora.  We are also looking into word 

alignment techniques in order to improve the overall 

qualities of phrase translation lexicons.  
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