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Abstract

In this paper, speaker adaptive acoustic modeling is inves-
tigated in the context of large vocabulary speech recognition by
training acoustic models with adult speech, children’s speech
and a mixture of adult and children’s speech.

By exploiting a limited amount (9 hours) of children’s
speech and a more significant amount (57 hours) of adult
speech, group-specific acoustic models for children and adults,
respectively, were trained using several methods for speaker
adaptive acoustic modeling. In addition, age-independent
acoustic models were trained by exploiting adult and children’s
speech. Recognition experiments were performed on three
speech corpora, two consisting of children’s speech and one of
adult speech, using 64k word and 11k word trigram language
models.

Methods for speaker adaptive acoustic modeling proved to
be effective, in particular for training acoustic models on a mix-
ture of adult and children’s speech, ensuring recognition perfor-
mance aligned with that achieved with group-specific models
for adults and children. A 10.2% word error rate was achieved
on speech collected from children in the age range 8-12, com-
pared with the 8.2% word error rate achieved for adults uttering
the same texts.

1. Introduction
It is well known that when an automatic speech recognition
system trained on adult speech is employed to recognize chil-
dren’s speech, performance decreases drastically, especially for
younger children [1, 2, 3]. Characteristics of speech such as
pitch, formant frequencies and segmental durations are, in fact,
related to the age of the speakers [4]. For recognition of chil-
dren’s speech, age-specific acoustic models trained on speech
collected from children of the target age, or group of ages,
should be adopted [1, 2, 5]. However, training age-specific
acoustic models is costly as it requires collecting an adequate
amount of training data for each target age or group of ages.
In languages other than American English [5], there is a rel-
ative scarcity of large, publicly-available corpora of children’s
speech. Therefore, as a first approximation, children are often
treated as an homogeneous population group and group-specific
acoustic models are trained with speech from children of all
ages [1, 2, 6].

However, even in the case of adequate amounts of age-
specific training data, recognition performance reported for
children is usually significantly lower than that reported for
adults [1, 2] and it improves as the children’s age increases
[1, 2, 5]. This correlates well with studies showing that intra-
and inter-speaker spectral variability decrease as age increases
[4] and confirm that recognition of children’s speech is more
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difficult than recognition of adult speech especially when tar-
geting younger children [7].

In recent years, research issues, such as vocal tract length
normalization, speaker adaptive training, language modeling
and pronunciation variation modeling have been investigated
for improving children’s speech recognition [7, 2, 3, 5, 6], how-
ever all these issues still require systematic studies.

In this work, group-specific acoustic models for children
and adults, respectively, were trained using several methods for
speaker adaptive acoustic modeling. A limited amount (9 hours)
of children’s speech was exploited for training acoustic models
for children while a more significant amount of adult speech
(57 hours) was available for training acoustic models for adults.
In addition, age-independent acoustic models were trained by
exploiting adult and children’s speech.

Acoustic modeling was investigated in the context of a large
vocabulary speech recognition task by exploiting two parallel
speech corpora consisting of the same set of sentences read by
adults and children, respectively. This allowed us to compare
recognition performance achieved for adults and children. In
addition, a third test set, composed of read children’s speech,
was exploited to further validate the results. Results showed
that speaker adaptive acoustic modeling methods were effec-
tive in training acoustic models on a mixture of adult and chil-
dren’s speech, ensuring recognition performance aligned with
that achieved with group-specific models.

The paper is organized as follows: first, the speech corpora
used in this work are described in Section 2. Section 3 presents
an analysis on phone duration in children’s speech as a function
of age. The experimental set-up is then presented in Section 4.
Section 5 briefly introduces the speaker adaptive acoustic mod-
eling methods adopted. Recognition experiments are described
in Section 6. Final remarks are reported in Section 7 which
concludes the paper.

2. Speech corpora
For acoustic model training three speech corpora were used.
Two of them, the ChildIt and the SpontIt corpora, consist of
children’s speech while the third one, the IBN corpus, consists
of adult speech. Tables 1 and 2 summarize the characteristics of
the speech corpora used in this work for training and testing.

training set IBN ChildIt SpontIt
speaking style planned/spont. read spont.
signal quality clean clean clean
sampling frequency 16 kHz 16 kHz 16 kHz
language Italian Italian Italian
speaker age >20 7-13 8-12
no. speakers >1000 129 21
recording hours 57h:07m 7h:47m 1h:20m

Table 1: Characteristics of speech corpora used for acoustic
model training.

The ChildIt corpus is an Italian task-independent speech



database that consists of read speech collected from children.
Data collection was performed in several schools located in the
North of Italy involving a total of 171 children, from grade 2
through grade 8, evenly distributed by grade and gender. Chil-
dren in grade 2 were approximately 7 years old while children
in grade 8 were approximately 13 years old. Speech data from
129 children were used for training.

The SpontIt corpus is an Italian task-independent speech
database that consists of spontaneous speech from 21 children
aged between 8 and 12, with a mean age of 10 years. The
ChildIt and the SpontIt corpora together provided about 9 hours
of children’s speech to be used for training acoustic models.

The IBN corpus consists mainly of recordings of Italian ra-
dio and TV news programs which were manually segmented,
annotated and transcribed [8].

test set Tgr-adult Tgr-child ChildIt
speaking style planned read read
signal quality clean clean clean
sampling freq. 16 kHz 16 kHz 16 kHz
language Italian Italian Italian
speaker age >20 8-12 7-13
no. speakers 76 30 42
no. utterances 570 570 1680
word occurrences 6575 6575 15355
language model trigram trigram
rec. dictionary size 64000 11000
perplexity 180 900
OOV rate 1.0% 0.0%

Table 2: Characteristics of speech corpora used for recognition
experiments.

Two parallel corpora, called Tgr-adult and Tgr-child, con-
taining the same set of sentences uttered by adults and children,
were designed for testing. By exploiting manual segmentation
and word transcription, the sentences in the IBN test set suitable
to be read by children were identified and grouped into lists of
about 20 sentences each. These sentences were selected among
those judged well pronounced by transcribers of the IBN corpus
and characterized by good acoustic conditions. Each of the 30
children, aged from 8 to 12, involved in the data collection was
asked to read one of these lists. Children were allowed to repeat
the same sentence more than once, and just the last repetition
was stored.

In practice, the Tgr-adult corpus is a subset of the IBN test
set (which was not used in this work) corresponding to the sen-
tences selected for children. We have to point out that the set of
sentences read by a specific child in Tgr-child was usually pro-
nounced by several speakers in the IBN test set, as is evident by
the number of speakers in the two corpora reported in Table 2.
This caused a certain mis-alignment in experimental conditions
in some recognition experiments. In practice, in experiments
in which, at the recognition stage, the system is adapted to the
incoming test data, the amount of data available plays a role in
the grade of adaptation achieved. For each adult speaker in Tgr-
adult corpus, system adaptation was performed on all the speech
available in the IBN test set while performance was reported
only for utterances included into the Tgr-adult corpus described
above. However, this mis-alignment was accepted because it
was not possible to extract a sufficient number of suitable sen-
tences with an even distribution over adult speakers.

In addition to the two Tgr corpora the test portion of the
ChildIt corpus was also used, which contains data from 42 chil-
dren, 3 males and 3 females for each grade.

3. Mean phone duration
In the literature it is reported that adults and older children tend
to show shorter durational patterns than younger children [4]. In
this work phone duration was analyzed as a function of age. The

mean phone duration was computed first averaging the duration
of phones across all phones of each speaker and then across
speakers in each grade. Duration statistics were computed by
exploiting a phone-level segmentation produced automatically.
Each utterance was time-aligned with the HMM concatenation
corresponding to the uttered words allowing insertion of an op-
tional “silence” model between words and at the beginning and
the end of the utterance.

Segments of signals aligned with the “silence” HMM were
not taken into account in computing temporal statistics. Two
group-specific sets of triphone HMMs were used for children
and adults. Figure 1 reports the mean phone duration for chil-
dren, computed on the training set of the ChildIt corpus (at least
14 speakers per grade), and for adults, computed on the training
set of the IBN corpus.
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Figure 1: Mean duration of phones (msec) per grade computed
on the ChildIt training set. For comparison purpose, the mean
phone duration for adults, as computed on the IBN training set,
is also reported. Vertical bars denote inter-speaker variability
(standard deviation).

Mean phone duration varies with age and older age groups
exhibit shorter mean phone durations. However, we have to
point out that the mean phone durations reported here are
likely affected by reading ability and length of sentences (much
shorter for younger children). Furthermore, the significant dif-
ference in mean phone duration between children in grade 8
and adults can be explained by the fact that the IBN corpus is
formed mostly of speech from professional radio and TV an-
nouncers speaking quite fast.

4. Experimental set-up
For recognition experiments we used the ITC-irst HMM
software package employing state-tied, cross-word triphone
HMMs. In particular, a Phonetic Decision Tree (PDT) was used
for tying the states of triphone HMMs. Output distributions as-
sociated with HMM states were modeled with mixtures with up
to 8 diagonal covariance Gaussian densities.

In all acoustic model sets trained, “silence” was modeled
with a single state HMM. In addition a number of models for
common non-verbal phenomena (15 when training on adult
speech and 5 when training on children’s speech) were trained.

Each speech frame was parameterized into a 39-
dimensional observation vector composed of 13 mel frequency
cepstral coefficients (MFCCs) plus their first and second order
time derivatives. Cepstral mean subtraction was performed on
static features on an utterance-by-utterance basis. In the follow-
ing, this acoustic front-end is denoted as MFCC39.

Two additional acoustic front-ends were considered by per-
forming mean and variance normalization in two different ways.
In one case, after generating the MFCCs, mean subtraction and
variance normalization was performed before computing first
and second order time derivatives. We will denote this set of
acoustic features with MFCC39-MVN13. Alternatively, mean



and variance normalization was applied to all 39 unnormalized
acoustic features. We will denote this latter set of acoustic fea-
tures as MFCC39-MVN39. Mean and variance normalization
was always performed on a speaker-by-speaker basis by assum-
ing data from each speaker available in a single block and forc-
ing each acoustic feature to have zero mean and unit variance.

Two language models (LMs) were estimated and used in
speech recognition experiments reported in this paper.

For experiments on the two Tgr corpora the language model
was the 64k word trigram language model adopted by the broad-
cast news transcription system developed at ITC-irst for the Ital-
ian language [8]. The second language model, used for recog-
nition experiments on the ChildIt test set, was an 11k trigram
language model estimated on a corpus of newspaper articles.
The word dictionary was composed of the words occurring in
the training and test sets of the ChildIt corpus.

The perplexities and the out-of-vocabulary (OOV) rates
computed on the test sets are reported in Table 2. The high per-
plexity shown by the 11k trigram language model on the ChildIt
test set is explained by the fact that the statistics estimated on
the training text corpus, composed of newspaper articles, do not
reflect well the statistics of the ChildIt test set, which was ex-
tracted from literature for children.

5. Speaker adaptive acoustic modeling
Speaker adaptive modeling aims at reducing or compensating
for acoustic variations induced by different characteristics of
each training and testing speaker. In this work, speaker adaptive
acoustic modeling was investigated through vocal tract length
normalization (VTLN), speaker adaptive training (SAT) and
constrained MLLR based speaker normalization (CMLSN).

VTLN aims at reducing inter-speaker acoustic variability
due to vocal tract length variation among speakers [9]. The
training and recognition procedures adopted for implementing
VTLN in this work follow closely those proposed in [10]. How-
ever, some changes were introduced. The frequency warp-
ing process was implemented by changing the spacing and the
width of the filters in the mel filter-bank while keeping the
speech spectrum unchanged [9]. In addition, during recogni-
tion a speaker-specific warping factor was estimated instead of
selecting the warping factor on an utterance-by-utterance basis.

Speaker adaptive training aims at compensating for inter-
speaker acoustic variability present in the training set by means
of speaker-specific transformations, estimated through maxi-
mum likelihood linear regression (MLLR), of the means of out-
put distributions of continuous density HMMs [11]. The vari-
ant of the SAT algorithm developed by Gales [12] was used
in this work. This variant makes use of an affine transforma-
tion for transforming acoustic observations of each training and
testing speaker, instead of modifying model parameters. With
this method, during training, a set of SI models, fully trained
on unnormalized data, is assumed as seed models, and param-
eters of Gaussian densities of these models are iteratively re-
estimated by applying the estimated transformations on training
data. During the recognition stage, transformation parameters
are again iteratively estimated with respect to the models to be
used for decoding.

CMLSN is a speaker normalization method which performs
speaker normalization by transforming the acoustic observation
vectors by means of speaker-specific constrained MLLR trans-
formations. However, differently from the variant of SAT pro-
posed by Gales in [12], speaker-specific transformations are es-
timated with the aim of reducing the acoustic mismatch of the
speaker’s data with respect to a set of target HMMs which is
different from the HMM set to be used for recognition. This is
done both during training and decoding stages. Details about
this technique can be found in [6].

For each of the three methods described above, word tran-
scriptions for test utterances of each speaker were provided by
a preliminary decoding step carried out with baseline models

trained on unnormalized data. Data of each speakers were as-
sumed available in one block for multiple processing. The com-
binations of the VTLN method described above with the SAT
and the CMLSN methods were also investigated.

6. Recognition experiments
In this Section, results of several experiments are reported con-
cerning recognition of adult and children’s speech with acous-
tic models trained on adult speech (Adult HMMs), children’s
speech (Child HMMs) and a mixture of adult and children’s
speech (Adult+Child HMMs).

6.1. Acoustic feature normalization

A common practice in automatic transcription experiments is
that of performing mean and variance normalization of acoustic
features. We investigated two possibilities - performing mean
and variance normalization on a speaker-by-speaker basis of:
1) the 13 MFCCs; 2) all the 39 acoustic features. These exper-
iments were motivated by the fact that analysis on phone dura-
tion, presented in Section 3, revealed that adults and children’s
speech in the corpora used in this work was characterized by a
very different mean phone duration. It can be hypothesized that
the effect of the speaking rate is mostly concentrated on the first
and second order time derivatives of the MFCCs [13], therefore
performing mean and variance normalization of dynamic fea-
tures could be useful to compensate for very different speaking
rates.

Recognition results, in terms of word error rate (WER),
are reported in Table 3. By considering first results obtained
with the standard acoustic front-end (MFCC39), we note that
with group-specific acoustic models under matched conditions
(that is, training and testing on the same population group),
performance for adults is much better than that for children,
10.4%WER to be compared with 14.2% WER. However, we
have to point out that there are much more training data for
adults than for children and therefore the performance gap could
be partially filled by just having more training data. As ex-
pected, under unmatched conditions (for example, in the case
of children’s speech recognized with acoustic models trained
on adult speech), recognition results are much worse than those
achieved under matched conditions. This is mainly due to dif-
ferent vocal characteristics of adults and children [1, 2, 4].

When training age-independent models with an unbalanced
amount of adult and children’s speech (57 hours of adult speech
plus 9 hours of children’s speech for a total of 66 hours),
recognition results were worse than those achieved with group-
specific models, especially for children: 20.6% WER was
achieved to be compared with 14.2% WER. This means that
simply mixing unbalanced amounts of training data is not an
effective approach for training age-independent acoustic mod-
els.

Test Set
HMM set Feature Set Tgr-adult Tgr-child

Adult MFCC39 10.4 37.2
HMMs MFCC39-MVN13 10.2 36.4

MFCC39-MVN39 10.1 33.3
Child MFCC39 45.4 14.2

HMMs MFCC39-MVN13 48.1 14.1
MFCC39-MVN39 44.1 13.8

Adult + MFCC39 11.0 20.6
Child MFCC39-MVN13 10.4 20.4

HMMs MFCC39-MVN39 10.5 17.9

Table 3: Performance (% WER) obtained on the Tgr-adult and
Tgr-child test sets with acoustic models trained on adults and
children and by adopting different acoustic front-ends.

In Table 3 we can note that mean and variance normaliza-
tion of all acoustic features (MFCC39-MVN39) ensures sys-



tematic benefits with respect to adopting the standard acoustic
front-end (MFCC39), especially in the case of unmatched train-
ing and testing conditions and of training with a mixture of adult
and children’s speech. Normalizing just the static acoustic fea-
tures (MFCC39-MVN13) seems to be less effective and consis-
tent. Therefore, the experiments reported in the following were
carried out performing mean and variance normalization on all
acoustic features.

6.2. Adaptive training experiments

Speaker adaptive acoustic modeling was carried out by training
acoustic models with VTLN, CMLSN and SAT methods. Ad-
ditional speaker adaptive methods resulted from cascading the
VTLN method with the SAT and the CMLSN methods.

Word transcriptions of test utterances, needed for normal-
ization/adaptation purposes, were provided by preliminary de-
coding steps with the single pass baseline systems, the reference
performance of which are reported in Table 3 (rows MFCC39-
MVN39).

In addition, unsupervised static speaker adaptation was al-
ways performed by adapting means and variances of Gaussian
densities through MLLR before performing the second decod-
ing step. Two regression classes were defined and the associated
transformation matrices were estimated through three MLLR it-
erations. Recognition results are reported in Table 4.

Test Set
Tgr-adult Tgr-child ChildIt

Baseline 9.3 15.3 20.0
VTLN 8.8 13.0 15.4

Adult CMLSN 8.6 12.4 15.2
HMMs SAT 8.6 12.3 16.0

VTLN+SAT 8.5 11.8 14.8
VTLN+CMLSN 8.2 11.8 14.4

Baseline // 12.0 11.6
VTLN // 11.5 11.2

Child CMLSN // 10.9 10.6
HMMs SAT // 11.1 11.0

VTLN+SAT // 10.7 10.5
VTLN+CMLSN // 10.5 10.6

Baseline 9.7 12.7 13.6
Adult VTLN 8.9 11.1 11.3

+ CMLSN 8.5 10.2 10.7
Child SAT 8.7 11.0 11.5

HMMs VTLN+SAT 8.4 10.1 10.5
VTLN+CMLSN 8.2 10.2 10.4

Table 4: Performance (% WER) obtained on the Tgr-adult and
Tgr-child test sets using HMMs trained on adult speech, chil-
dren’s speech and a mixture of adult and children’s speech with
several speaker adaptive acoustic modeling methods. For com-
parison purposes, results on ChildIt corpus are also reported.

Results on the two Tgr test sets show that methods for
speaker adaptive acoustic modeling are effective. While
CMLSN and SAT methods outperform the VTLN method, best
results are achieved by cascading the VTLN method with the
CMLSN and SAT methods. By considering group-specific
models for adults, on adult speech the baseline system ensures a
9.3% WER, while with speaker adaptive acoustic modeling an
8.2% WER is achieved. By considering group-specific mod-
els for children, the baseline system ensures a 12.0% WER
compared with a 10.5% WER achieved with speaker adaptive
acoustic modeling. When training with a mixture of adult and
children’s speech, speaker adaptive acoustic modeling ensures
performance aligned (compare results in rows VTLN+CMLSN)
with that achieved for adults and children by using group-
specific acoustic models: 8.2% WER for adults and 10.2%
WER for children.

Results on the ChildIt test set confirm the effectiveness
of speaker adaptive acoustic modeling methods. By consider-

ing models trained on children’s speech, the baseline system
ensures a 11.6% WER, while with speaker adaptive acoustic
modeling a 10.5% WER is achieved. Furthermore, when train-
ing HMMs on adult and children’s data a 10.4% WER (row
VTLN+CMLSN) is obtained adopting speaker adaptive acous-
tic modeling.

7. Conclusions
In this work, speaker adaptive acoustic modeling was investi-
gated by using for training children’s speech, adult speech and
a mixture of children’s and adult speech.

Results on automatic transcription tasks with a large vocab-
ulary showed that mean and variance normalization of acous-
tic features together with speaker adaptive acoustic modeling
allowed the development of age-independent acoustic models
ensuring performance for adults and children aligned with that
provided by group-specific acoustic models. This also opens
new perspectives to raise recognition performance for children
aged from 8 to 12 to a similar level of that for adults.

8. References
[1] J.G. Wilpon and C.N. Jacobsen, “A Study of Speech

Recognition for Children and Elderly,” in Proc. of
ICASSP, Atlanta, GA, May 1996, pp. I–349–352.

[2] A. Potamianos and S. Narayanan, “Robust Recognition
of Children’s Speech,” IEEE Trans. on Speech and Audio
Processing, vol. 11, no. 6, pp. 603–615, Nov. 2003.

[3] D. Giuliani and M. Gerosa, “Investigating Recognition
of Children’s Speech,” in Proc. of ICASSP, Hong Kong,
China, April 2003, pp. II–137–140.

[4] S. Lee, A. Potamianos, and S. Narayanan, “Acoustic of
children’s speech: Developmental changes of temporal
and spectral parameters,” Journal of Acoust. Soc. Amer.,
vol. 105, no. 3, pp. 1455–1468, March 1999.

[5] A. Hagen, B. Pellom, and R. Cole, “Children’s Speech
Recognition with Application to Interactive Books and
Tutors,” in Proc. of ASRU Workshop, St. Thomas, USA,
December 2003.

[6] D. Giuliani, M. Gerosa, and F. Brugnara, “Speaker
Normalization through Constrained MLLR Based Trans-
forms,” in Proc. of INTERSPEECH/ICSLP, Jeju Island,
Korea, Oct. 2004, pp. 2893–2897.

[7] Q. Li and M. Russell, “An Analysis of the Causes of In-
creased Error Rates in Children’s Speech Recognition,” in
Proc. of ICSLP, Denver,CO, Sep. 2002.

[8] N. Bertoldi, F. Brugnara, M. Cettolo, M. Federico, and
D. Giuliani, “From broadcast news to spontaneous di-
alogue transcription: Portability issues,” in Proc. of
ICASSP, Salt Lake City, UT, 2001, vol. 1, pp. 37–40.

[9] L. Lee and R.C. Rose, “Speaker Normalization Using
Efficient Frequency Warping Procedure,” in Proc. of
ICASSP, Atlanta, GA, May 1996, pp. I–353–356.

[10] L. Welling, S. Kanthak, and H. Ney, “Improved Meth-
ods for Vocal Tract Normalization,” in Proc. of ICASSP,
Phoenix, AZ, April 1999, vol. 2, pp. 761–764.

[11] T. Anastasakos, J. McDonough, R. Schwartz, and
J. Makhoul, “A Compact Model for Speaker-Adaptive
Training,” in Proc. of ICSLP, Philadelphia, PA, Oct. 1996,
pp. 1137–1140.

[12] M. J. F. Gales, “Maximum likelihood linear transfor-
mations for HMM-based speech recognition,” Computer
Speech and Language, vol. 12, pp. 75–98, 1998.

[13] F. Martnez, D. Tapias, and J. Alvarez, “Towards
Speech Rate Independence in Large Vocabulary Contin-
uous Speech Recognition,” in Proc. of ICASSP, Seat-
tle,WA, May 1998, vol. 2, pp. 725–728.


