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ABSTRACT

The paper investigates the integration of Heteroscedastic Linear Dis-
criminant Analysis (HLDA) into adaptively trained speech recogniz-
ers. Two different approaches are compared: the first is a variant
of CMLLR-SAT, the second is based on our previously introduced
method Constrained Maximum-Likelihood Speaker Normalization
(CMLSN). For the latter both HLDA projection and speaker-specific
transformations for normalization are estimated w. r. t. a set of sim-
ple target-models. It is investigated if additional robustness can be
achieved by estimating HLDA on normalized data. Experimental
results are provided for a broadcast news task and a collection of
parliamentary speeches. We show that the proposed methods lead to
relative reductions in word error rate (WER) of 8% over an adapted
baseline system that already includes an HLDA transform. The best
performance for both tasks is achieved for the algorithm that is based
on CMLSN. When compared to the combination of HLDA and
CMLLR-SAT, this method leads to a considerable reduction in com-
putational effort and to a significantly lower WER.

1. INTRODUCTION

Heteroscedastic Linear Discriminant Analysis (HLDA) [1] is a lin-
ear transformation that performs both a diagonalization and a reduc-
tion of the dimension of the feature space. It may be regarded as a
generalization of Linear Discriminant Analysis (LDA) which takes
into account the individual covariance matrices of the classes. In
this paper we investigate the integration of HLDA into an adaptively
trained speech recognizer. Adaptive training schemes are often ap-
plied for tasks where recording conditions, acoustic environment
or speaker frequently change. These algorithms estimate speaker-
specific transformations –either of the models or of the acoustic
features– to exclude phonetically irrelevant variability from training.
The latter, which includes all kinds of speaker, channel and environ-
ment variability, is subsumed here by the single term speaker vari-
ability. Well-known representatives of adaptive training algorithms
are Speaker Adaptive Training (SAT) [2] and Vocal Tract Length
Normalization (VTLN) [3]. Classical SAT uses Maximum Likeli-
hood Linear Regression (MLLR) [4] as a speaker-specific transfor-
mation, therefore it will be referred to as MLLR-SAT in this paper.
Often CMLLR-SAT [5] is employed, a variant in which MLLR has
been replaced by Constrained Maximum Likelihood Linear Regres-
sion (CMLLR) [6, 5]. CMLLR has the advantage that it allows for
an efficient implementation as a feature transformation.
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Integrating HLDA into an adaptive training procedure should
ideally lead to a robust estimation both of the speaker-specific trans-
formations and of the HLDA projection matrix. Furthermore the
required computational resources (memory and time) should be as
low as possible. A straightforward approach, which is investigated
in this paper, is to integrate HLDA into CMLLR-SAT. An alter-
native is based on a normalization method for adaptive training
that we have introduced recently: Constrained Maximum-Likelihood
Speaker Normalization (CMLSN) [7, 8] is similar to VTLN in the
sense that the speaker-specific transforms are applied before training
the recognition-models, and it is similar to CMLLR-SAT in the sense
that CMLLR is used for the feature transformation. We have shown
[7, 8] that CMLSN leads to better results both than CMLLR-SAT and
VTLN for a large number of different tasks. Thus, the integration of
HLDA into CMLSN is of interest. It is shown for two different tasks
that the proposed approach is effective; it even performs significantly
better than the combination of CMLLR-SAT with HLDA. The pro-
cedure does not require a training of complex recognition-models
in the high-dimensional feature-space which leads to a considerable
reduction of computational effort. A third approach which is in-
vestigated in this paper is to evaluate if additional gains could be
achieved by estimating HLDA in a speaker-normalized space. This
way speaker-variability is reduced before optimizing the projection
matrix and it can be estimated more robustly.

Previous work by Matsoukas and Schwartz [9] already investi-
gated the problem to find a suitable integration of HLDA into adap-
tive training. Based on the assumption that speaker variability should
be discarded from the HLDA projection, a variant of CMLLR which
is based on full-covariance densities is estimated for each speaker in
the high-dimensional original feature space. The projection matrix
is then estimated from normalized features. The resulting HLDA-
SAT algorithm requires to train and to store three different HMM
sets for a speech recognizer. In the following we will investigate an
approach to perform feature normalization before feature projection
as well. However, the algorithm avoids the additional effort of full-
covariance CMLLR by using semi-tied covariances. Furthermore
only two different sets of HMMs are needed. In contrast to [9] our
results do not confirm any significant advantage of the estimation of
the HLDA projection in a normalized feature-space.

The paper is structured as follows: In Sec. 2 a short definition of
HLDA is given. Sec. 3 is dedicated to an overview of CMLSN. In
Sec. 4 different approaches to integrate HLDA into adaptive training
are proposed and described. The data corpus and the baseline system
are introduced in Sec. 5. Experiments are detailed and discussed in
Sec. 6. We give a conclusion and a prospect on our future work in
Sec. 7.



2. HLDA DEFINITION AND ESTIMATION

HLDA is defined in a maximum-likelihood framework [1]. The pro-
jection from a p-dimensional feature space into a q-dimensional fea-
ture space with q < p is performed by a matrix T which is estimated
iteratively with the EM-algorithm. Given matrix T̂ from the previ-
ous step and p-dimensional feature-vectors O := o1, . . . ,oT the
improved matrix T is chosen such that

Q(T̂,T) =
X

m

X

t

p(m|O, T̂) · log [ |T| · N (Tot|Tµm,Σm) ]

is maximized. N (ot | µm,Σm) represents in this equation the out-
put density m of an HMM. The covariance matrices Σm are con-
strained to be diagonal to allow for a row-by-row optimization of T.
T is optimized with an ad-hoc iterative numerical procedure [10] uti-
lizing full-covariance statistics for each density m. In order to ensure
that T is a projection for the optimization of the rows q + 1, . . . p

of T the state-specific statistics are replaced by the corresponding
global covariance statistics. Consequently, after estimation of T the
dimensions q + 1, . . . , p of the transformed feature vectors Tot can
be discarded, yielding q-dimensional feature vectors o

T

t . As HLDA
performs a feature space diagonalization it is not reasonable to esti-
mate the transformation matrix without jointly updating the covari-
ance matrices of the output densities of the acoustic models Λ. Thus,
any algorithm for HLDA computation combines the optimization of
the transformation with an update and a re-estimation of the covari-
ances. The output is not only a matrix T but also an updated set of
acoustic models Λ

T. We use an implementation of the time-efficient
procedure introduced in [10], more details can be found in [11].

3. ADAPTIVE TRAINING USING CMLSN

Here we give a short review of the CMLSN algorithm for adaptive
training. More details and a description of possible extensions can
be found e. g. in [8]. The procedure is motivated by the aim of reduc-
ing the influence of speaker variability in the early stages of acoustic
model training. CMLSN exploits the fact that CMLLR can be im-
plemented as a feature transformation. Speaker-dependent CMLLR
parameters As,bs are estimated using the EM-algorithm w. r. t. a
model Λ from a set of feature vectors Os for which a transcription
has to be provided. In this work Os does not necessarily corre-
spond to a speaker’s utterance but to a cluster of acoustically similar
speech segments that have been determined in a data-driven manner.
The transformed or normalized feature vectors os,t for a speaker
s are computed according to os,t := Asos,t + bs. While CM-
LLR adaptation is usually performed w. r. t. the recognition-models,
in CMLSN separate sets of models are used. Acoustic normaliza-
tion is performed w. r. t. so-called target-models Λ

n. For the acous-
tic representation in the decoding phase recognition-models Λ

r are
employed. All parameters of the two model sets, like initialization,
definition of the context-dependent allophones or model structure
are completely independent. We have shown in [8] that it is advan-
tageous to use target-models with a simple structure, i. e. triphone
HMMs with a single Gaussian density for each tied-state. Adaptive
training using CMLSN proceeds as follows:

1. train target-model Λn on untransformed feature vectors O.
2. for each speaker s, estimate {As,bs} w. r. t. Λn for the fea-

ture vectors Os. Apply {As,bs} to Os, yielding trans-
formed feature vectors O

n
s .

3. use the conventional training procedure to initialize and to
train the recognition-models Λ

r on O
n; including state tying

and the definition of the context-dependent allophones.

In the recognition phase a transcription of the utterance has to be
available from the first recognition pass. Normalization and decod-
ing in the second pass is performed as follows:

1. estimate {As,bs} w. r. t. Λn for the feature vectors Os. Ap-
ply {As,bs} to Os, yielding transformed feature vectors
O

n
s .

2. decode O
n using Λ

r.
In this paper CMLLR for feature normalization is combined with
MLLR to adapt the recognition-models Λ

r for the second recogni-
tion pass which gives usually a small additional improvement.

4. INTEGRATION OF HLDA INTO ADAPTIVE TRAINING

Three different approaches to integrate HLDA into adaptive training
are compared in this paper. It has to be taken into account that CM-
LLR, which is used for feature normalization both in CMLLR-SAT
and CMLSN, is based on a diagonal-covariance assumption. Con-
sequently, it does not make sense to apply HLDA to a normalized
feature vector and it is impossible to estimate HLDA directly for the
recognition-models of an adaptively trained speech recognizer.
CMLLR-SAT+HLDA results from adding three iterations of
CMLLR-SAT to HLDA-transformed recognition-models. It requires
a significant amount of computational effort as the recognition mod-
els have to be estimated in the high-dimensional feature-space.

1. train recognition-models Λ
r on high-dimensional features O

2. estimate HLDA transform T w. r. t. Λr, yielding transformed
recognition-models Λ

r,T and low-dimensional features O
T

3. Starting from Λ
(0),r,T := Λ

r,T and features O
(0)n,T
s := O

T

iterate for i = 1, 2, 3:

(a) estimate CMLLR {A
(i)
s ,b

(i)
s } w. r. t. recognition-

models Λ
(i−1),r,T and features O

(i−1)n,T
s yielding

normalized, low-dimensional features O
(i)n,T
s

(b) perform one iteration of Baum-Welch-Training for
Λ

(i−1),r,T on O
(i)n,T
s , yielding updated recognition-

models Λ
(i),r,T

In order to integrate the HLDA transform into the CMLSN algorithm
it is estimated w. r. t. the target-models. This leads to a significant re-
duction in computation time and memory as only the target-models,
which contain much less densities than the recognition-models, have
to be estimated in the high-dimensional feature space. Two different
methods are proposed as we want to evaluate if there is an advantage
in reducing the speaker variability before collecting the statistics for
HLDA estimation.
CMLSN+HLDA (A) applies HLDA and CMLLR sequentially,
there is no reduction of speaker variability prior to HLDA. The di-
mension of the CMLLR transformation matrices is equivalent to the
dimension q of the reduced feature space.

1. train target-models Λ
n on high-dimensional features O

2. estimate HLDA transform T w. r. t. the target-models, yield-
ing transformed target-models Λ

n,T and low-dimensional
features O

T

3. estimate CMLLR {As, bs} w. r. t. target-models Λ
n,T and

features O
T

s

4. train recognition-models on normalized, low-dimensional
features O

n,T
s



CMLSN+HLDA (B) normalizes the feature vectors before ap-
plication of HLDA. As conventional CMLLR is based on a
diagonal-covariance assumption, the approach combines a Semi-
tied-Covariance transformation (STC) H [10] with the estimation of
the CMLLR transformations. This allows to compute a CMLLR for
full-covariance matrices, with the constraint that the full-covariance-
matrices have to be semi-tied ones. The dimension of the CMLLR
transformation matrices is equivalent to the dimension p of the high-
dimensional feature space before application of the HLDA transfor-
mation.

1. train target-models Λ
n on high-dimensional features O

2. estimate STC transform H w. r. t. the target-models Λ
n,

yielding transformed target-models Λ
n,H and diagonalized

features O
H

3. estimate CMLLR {As,bs} w. r. t. Λn,H and features O
H

s

4. map CMLLR and target-models back into original space:
{As, bs} 7→ {H−1

As H, H
−1

bs}; Λn,H 7→ Λ
n′

5. apply {H−1
As H, H

−1
bs} to features Os, yielding nor-

malized features O
n
s

6. estimate HLDA T w. r. t. target-models Λ
n′

and normalized
features O

n
s , yielding low-dimensional features O

n,T
s

7. train recognition-models on normalized, low-dimensional
features O

n,T
s

Note that the order of CMLLR and HLDA does also influence the
estimation of the CMLLR matrices. HLDA is a transformation that
reduces irrelevant variability in the projected feature space. Thus,
we can suppose that CMLLR can be estimated more robustly in a
HLDA-projected feature space. It has to be measured empirically
which on of the methods (A) and (B) leads to better results in the
final system. In Sec. 6 we will compare the algorithms (A) and (B)
and we will relate them to CMLLR-SAT+HLDA.

5. DATA SETS AND BASELINE SYSTEMS

Experiments are conducted on a corpus of recorded parliamentary
speeches and on a corpus of broadcast news data; in the following
the tasks will be referred to as EPPS English and HUB4, respec-
tively. European Parliament Plenary Sessions (EPPS) is one of the
evaluation tasks of the EU-funded project TC-STAR (http://www.tc-
star.org). The English EPPS training data, released within the TC-
STAR project and consisting of about 40 hours of speech, are ex-
ploited for training. A trigram language model was trained on
the EPPS English final transcriptions (about 36 million words) and
then adapted to the manual transcriptions of the acoustic EPPS data
(about 370,000 words). Results are reported for the EPPS English
development test set which corresponds to about 3.5 hours of speech.
For the HUB4 broadcast news task we used the BN-E data released
by the LDC in 1997 and 1998 for training of the acoustic models.
The corpora contain a total of about 143 hours of usable speech data.
Language models were trained on ≈132 million words of broadcast
news transcripts distributed by LDC and on the transcripts of the
BN-E training data. For evaluation we use the 1998 Hub4 Eval98
data consisting of two files, each with 1.5 hours of speech. Results
are reported w. r. t. the focus conditions (F-conditions) marked in this
test set:

F0: baseline planned broadcast speech, clean background.
F1: spontaneous broadcast speech, clean background.
F2: speech over telephone, clean background.
F3: speech with background music.

F4: speech with degraded acoustics (noise, other speech).
F5: planned speech by non-native speakers, clean background.
FX: all other conditions that cannot be classified into F0-F5.

The front-end of the ITC-irst speech recognizer combines 13 Mel-
frequency Cepstral Coefficients and their first- and second-order
time-derivatives into a 39-dimensional feature vector. For the EPPS
data manual segmentation is exploited while the HUB4 data is seg-
mented using a Bayesian Information Criterion. For both tasks the
speech segments are clustered automatically. In the baseline sys-
tems Cluster-wise Mean and Variance Normalization (CMVN) en-
sures that for each cluster the static features have mean zero and vari-
ance one. The acoustic models are state-tied, cross-word, gender-
independent, bandwidth-independent triphone HMMs. The HUB4
baseline system has about 9000 tied states and about 146000 Gaus-
sians while the EPPS baseline system has about 5000 tied states and
about 91000 Gaussians.

6. EXPERIMENTAL RESULTS

Before integrating HLDA into adaptive training we were interested
in measuring the performance of different popular adaptive training
algorithms for a common test set. While we have already compared
CMLSN with CMLLR-SAT in [8], we could not find any published
comparison between MLLR-SAT and CMLLR-SAT. The results
for the EPPS English task are shown in Tab. 1. Systems MLLR-

system EPPS dev. set
baseline 16.1

baseline (adapted) 14.8
MLLR-SAT (mean) 14.2

MLLR-SAT (mean+var.) 14.2
CMLLR-SAT 14.1

CMLSN 13.6

Table 1. Word error rates (WER) on EPPS English for different
adaptive training methods.

SAT (mean), MLLR-SAT (mean+var.) and CMLLR-SAT result from
adding three iterations of SAT to the baseline system, they differ
in the type of the speaker-specific transform employed for adap-
tive training: For MLLR-SAT (mean) and MLLR-SAT (mean+var.)
4-class MLLR adaptation is used while system CMLLR-SAT uses
single-class CMLLR. In MLLR-SAT (mean) only the mean vectors
are adapted in training, this corresponds to the definition of MLLR-
SAT in [2]. For MLLR-SAT (mean+var.) both means and variances
of the recognition-models are adapted in training. System CMLSN
has been trained with the algorithm described in Sec. 3. The target-
models are tied-state triphone-models with a single density per state.
Note that for CMLSN only segment-wise mean normalization of the
features is applied and no CMVN. All adapted systems in Tab. 1 use
4-class MLLR and the supervision of the baseline system in decod-
ing. From Tab. 1 it can be seen that there is no advantage of adapting
both means and variances in MLLR-SAT in contrast to mean-only
adaptation. This may be due to the simplicity of the variance trans-
formation, which is constrained to be a diagonal matrix for practical
reasons. Furthermore, CMLLR-SAT and MLLR-SAT reach about
the same performance which indicates that the specific type of the
speaker-specific transform used in training does not have a large in-
fluence. As MLLR-SAT needs much more computational effort in
training than all other approaches we will not take it into account in
the following experiments. From all four adaptively trained speech
recognizers, CMLSN performs best as it achieves a rel. reduction of



more than 8% over the adapted baseline and about 3% over CMLLR-
SAT. This may be explained by the effective reduction of speaker
variability already at the beginning of the training of the recognition-
models in CMLSN and by the fact that the simple target-models
which are used for estimating the CMLLR transforms have only a
very limited ability to incorporate speaker variability. Next we an-
alyze if these properties will still be advantageous when combined
with HLDA.

All systems with HLDA investigated here are based on the same
high-dimensional feature set that consists of the static features and
their first, second and third-order time-derivatives, i. e. a total of
p = 52 parameters. The dimension q of the projected lower-
dimensional feature-space is 39. A comparison of the different ap-
proaches for the EPPS English task is shown in Tab. 2. The system

EPPS English dev. test setsystem w/o HLDA HLDA
baseline 16.1 15.4

baseline (adapted) 14.8 14.3
CMLLR-SAT 14.1 13.7

13.2 (A)CMLSN 13.6 13.1 (B)

Table 2. WER on EPPS English with and without HLDA.

configurations are the same as in Tab. 1. It can be seen that HLDA
leads to a rel. reduction in WER between 3-4% for all systems. As
the rel. improvement of CMLSN over CMLLR-SAT remains about
the same also after application of HLDA we can conclude that the
proposed methods (A) and (B) are effective. Obviously the projec-
tion matrix can be estimated robustly and reliably w. r. t. the target-
models. This leads to a considerable reduction of computational ef-
fort as the target-models typically have much less output densities
than the recognition models (here 5820 vs. 90287 densities). Sys-
tem CMLSN+HLDA (A) is about 8% better than the adapted baseline
system with HLDA. However, as the difference between method (A)
and (B) is negligible we cannot confirm our supposition that estima-
tion of HLDA in a normalized feature space can improve results.

Our conclusions are affirmed by the results for the HUB4
task that are shown in Tab. 3. All adapted systems in this ta-

F-cond. all F0 F1 F2 F3 F4 F5 FX
proportion 100 30.7 19.3 3.4 4.3 28.2 0.7 13.5

baseline 20.5 12.9 20.0 30.0 24.0 20.7 20.9 34.3
baseline (adapted) 18.7 11.7 18.7 24.7 23.0 19.0 19.6 30.8

CMLLR-SAT 17.7 11.4 17.3 24.3 21.5 17.7 19.6 29.9
CMLSN 17.1 10.9 16.8 21.4 21.1 17.4 18.3 28.4

CMLLR-SAT+HLDA 16.5 10.1 16.0 23.4 21.7 16.4 17.0 28.4
CMLSN+HLDA (A) 16.1 10.1 15.9 22.9 19.8 15.8 17.4 27.8
CMLSN+HLDA (B) 16.4 10.6 15.9 22.7 21.1 16.2 17.0 27.7

Table 3. WER on HUB4 Eval98 for different approaches to integrate
HLDA.

ble use 2-class MLLR and the supervision of the baseline sys-
tem. The application of HLDA leads to a rel. reduction in WER
of about 6% for system CMLSN. The best system for the HUB4
task is CMLSN+HLDA (A) which is also the procedure that requires
the lowest computational effort. The difference between CMLLR-
SAT+HLDA and CMLSN+HLDA (A) is statistically significant ac-
cording to the MAPSSWE test with a p-value of 0.003.

7. CONCLUSION AND FUTURE WORK

We have shown that HLDA can be effectively integrated into an
adaptively trained speech recognition system. An evaluation of sev-
eral algorithms demonstrated that HLDA can be estimated effec-
tively w. r. t. to a set of simple target-models. When compared to
an approach based on CMLLR-SAT the proposed method leads to
a considerable reduction in computational effort for training and to
significant reductions in WER. Our supposition that estimation of
HLDA in a normalized feature space can improve results was not
confirmed. Future work should include an experimental compari-
son of different input feature spaces for HLDA. Until now only
third-order derivatives have been investigated. Furthermore, it seems
promising to include scores of a Gaussian mixture model or of a
phone-recognizer into the feature vectors before applying HLDA,
similar to the approach described in [12].
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