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ABSTRACT

A novel approach to Spoken Language Translation is pro-
posed, which more tightly integrates Automatic Speech
Recognition (ASR) and Statistical Machine Translation
(SMT). SMT is directly applied on an approximation of the
word graph produced by the ASR system, namely a confu-
sion network. The decoding algorithm extends a conven-
tional phrase-based decoder in that it can process at once
a large number of source sentence hypotheses contained
in the confusion network. Experimental results are pre-
sented on a Spanish-English large vocabulary task, namely
the translation of the European Parliament Plenary Sessions.
With respect to a conventional SMT decoder processingN -
best lists, a slight improvement in theBLEU score is re-
ported as well as a significantly lower decoding time.

1. INTRODUCTION

Research on Spoken Language Translation (SLT) has been
strongly boosted in the last years. First attempts to tackle
SLT were made by cascading Automatic Speech Recogni-
tion (ASR) and Machine Translation (MT). In particular, the
best hypothesis produced by the ASR system was passed as
a text to the MT system. Hence, supplementary information
easily available from the ASR system were not exploited
in the translation process, such as the list ofN -best hy-
potheses, the word graph and the likelihoods of the acoustic
model (AM) and the language model (LM). Such informa-
tion is indeed expected to be effective for improving trans-
lation quality, if employed properly [1, 2].
More recently, steps have been made toward an effective in-
tegration of ASR and MT into a unique statistically sound
framework, which takes into account multiple hypotheses
generated by the ASR component. Two main directions
have been followed: translatingN -best lists [2, 3] and trans-
lating ASR word-graphs by means of finite-state transduc-
ers [4, 5, 6].
In this paper, we propose an alternative approach which lies
in between. Translation is namely applied on an approxima-
tion of the original ASR word-graph, known asconfusion

network [7]. A specific log-linear translation model and
and efficient decoding algorithm are proposed which take
advantage of the topological properties of confusion net-
works. The decoder can be seen as an extension of a phrase-
based beam-search algorithm [8], in that each input word
can now admit a variable number of alternative hypotheses,
including theemptyword. While re-ordering capabilities of
the original algorithm are fully preserved, the exponential
growth of the number of hypotheses represented by the con-
fusion network only impacts polynomially on the decoding
time.

2. SPOKEN LANGUAGE TRANSLATION

SLT can be considered as an extension of SMT, since its
goal is to find the best translation of a speech utterance,
rather than of a text string.
Given the vectoro representing the acoustic observations of
the input utterance, let us defineF(o) as a set of transcrip-
tion hypotheses computed by an available ASR system and
represented through a word-graph. The assumption is that
due to approximations by the acoustic and language models,
the word-graph is likely to contain more correct hypotheses
than the one with largest probability.
The best translatione∗ is searched among all strings in the
target languageE through the following criterion:

e∗ = arg max
e

∑

f∈F(o)

Pr(e, f | o) (1)

wheref is an hidden variable representing any speech tran-
scription hypothesis. This gives the freedom of generat-
ing the best speech translation by considering the contribu-
tion of all available transcription hypotheses. Unfortunately,
the summation overF(o) introduces an additional level of
complexity, with respect to text translation.
According to the framework of maximum entropy, the con-
ditional distributionPr(e, f | o) can be determined through
suitable real valued feature functionshr(e, f ,o) and real pa-
rametersλr, r = 1 . . . R, and takes the parametric form:

pλ(e, f | o) =
1

Z(f)
exp

{
R∑

r=1

λrhr(e, f ,o)

}
(2)



... recordamos0.98 que0.98 quienes0.35 se0.97 presenta0.40 ε 0.78 esas0.86 ε 0.93 elecciones0.97 ...
quien0.31 he0.03 present́o0.22 a0.08 esa0.03 esas0.05 selecciones0.03 ...
quién0.12 presentan0.06 ε 0.04

... ... ...

Fig. 1. Matrix representation of a confusion network generated from a portion a Spanish input utterance. Words and pos-
terior probabilities are shown. The manual transcription of this utterance portion is “... recordamos que qui én se

present ó a esas elecciones ... ”.

whereZ(f) is a normalization term. By default, we assume
λr = 1.
Main advantage of the log-linear model defined in (2) is the
possibility to use any kind of features, regarded as important
for the sake of translation.
Recently, performance improvements have been achieved
by defining features in terms ofphrases̃e instead of single
words, and to find the best translationẽ∗ among all strings
of phrases in an augmented vocabularyẼ .
A complete search over all transcription hypothesesf in
F(o) is often hard to realize because the setF(o) is usu-
ally huge and its structure is complex to decode.
In order to efficiently overcome this issue, in this work two
methods are compared. Section 3 describes a novel ap-
proach that exploits an approximation of the word-graph,
calledconfusion network. Section 4 reviews, as a reference
term, the conventionalN -best translation approach.

3. CONFUSION NETWORK APPROACH

After formally introducing the concept of confusion net-
work, this section describes a generative translation process
starting from a confusion network. Hence, it explains in the
order how empty words can be treated, all feature functions
used by the translation model, the decoding algorithm, and
methods to improve its efficiency.

3.1. Confusion Network
A Confusion Network (CN)G is a weighted directed graph
with a start node, an end node, and word labels over its
edges. The CN has the peculiarity that each path from the
start node to the end node goes through all the other nodes.
As shown in Figure 1, it can be represented as a matrix of
words whose columns have different depths. Each word
wj,k in G is identified by its columnj and its positionk in
the column; wordwj,k is associated to the weightpj,k cor-
responding to the posterior probabilityPr(f = wj,k | o, j)
of havingf = wj,k at positionj giveno. It is worth notic-
ing thatPr(f | o, j) defines a probability measure over all
words of thej-th column of the CN.
A string f = f1, . . . , fm is a realization ofG if fj is equal
to any word in the columnj, j = 1, . . . , m. Viceversa,
any choice of one word per column corresponds to a spe-
cific string. In the following,F(G) will denote the set of all
realizations ofG.

A realizationf = f1, . . . , fm of G is associated with the
probability Pr(f | o) of having f given o, which can be
factorized in terms ofPr(f | o, j) as follows:

Pr(f | o) =
m∏

j=1

Pr(fj | o, j) (3)

Notice that the previous decomposition assumes stochastic
independence between the posterior probabilities of the sin-
gle words.
The generation of the CN from the ASR word-graph [7]
can produce in some columns a special wordε which cor-
responds to the empty word. For the sake of simplicity, we
assume thatε-words are completely indistinguishable from
the other normal words, unless differently specified.

3.2. Generative Translation Process

It is assumed that a translation ofl phrases̃e = ẽ1, . . . , ẽl

is generated incrementally withl +1 steps starting from the
input CN.
At each stepi = 0, . . . , l: (i) a new phrasẽei = e1, . . . , eki

is added, (ii) some yet uncovered columns ofG are possi-
bly covered, (iii) and one word per column is chosen and
mapped tõei.
According to the conventional notation for SMT [9], the
tabletτi denotes a string of source words translated intoẽi,
and the fertilityφi is the length ofτi. πi andψi identify
columns and positions within the CN that correspond to the
words ofτi. The target-to-source alignmentai is a short-
hand for(φi, τi, πi, ψi). The null word/phrasẽe0 = e0

copes with those words which cannot be translated.
Figure 2 shows a specific realization of the generative pro-
cess. Notice that in the here considered phrase-based model,
πi is constrained to coverφi consecutive columns of the CN.
However, different phrase-based models could be derived
by modifying this constraint.
The generative process induces an alignmenta = a0, . . . , al

betweenG and ẽ, which identifies a specific realization
f(a) = f1, . . . , fm of G. Any triple (ẽ,G,a) corresponds
to a solution of lengthl obtained through the generative
process, and(ẽi

0,G, ai
0) its portion of lengthi. The set of

all compatible alignments betweenG and ẽ is denoted by
A(G, ẽ). It is trivial to prove thatA(G, ẽ) =

⋃

f∈F(G)

A(f , ẽ).
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Fig. 2. The generative process of a translation produces an
alignment between words of the input confusion network
and words of the output string.

Hence, by introducing the alignmenta as ahiddenvariable,
the search criterion (1) can be rewritten as follows:

ẽ∗ ≈ arg max
ẽ

max
a∈A(G,ẽ)

Pr(ẽ,a | G) (4)

where the sum overf is approximated with the maximum.

3.3. Handling ε words
An important issue arises from the presence ofε-words in
G. Whereas they do not affect the generative process, they
have to be handled carefully in the definition of some feature
functions.
Let us assume that(ẽ,G,a) is obtained during the genera-
tive process. The realizationf of lengthm corresponding to
this triple can comprise less real words because it possibly
might contain someε-words. For this reason, some feature
functions should take into account the difference between
real andε-words.
In order to give a correct definition of the model, the vari-
ablesφ̂i, π̂i, ψ̂i, andm̂ are introduced which are directly
computed fromφi, πi, ψi, andm, respectively, by simply
removing theε words.

3.4. Feature functions

The log-linear modelPr(ẽ,a | G) is composed by the fol-
lowing 9 feature functions.
• One feature is the logarithm of a 3-gram target LM:

h1(ẽ,G,a) = log Pr(ẽ = ẽ1, . . . , ẽl)

=
l∑

i=1

log p(ki)p(ẽi | ẽi−2, ẽi−1) (5)

whereki is the length of̃ei. The phrase-based 3-gram prob-
abilities are further factorized by exploiting a conventional
word-based 3-gram LM.
• Two features model the fertility of the target phrases and
the null word. The former relies on statistics extracted
from a sample of phrase pairs, while the latter is the loga-
rithm of a binomial distribution.

h2(ẽ,G,a) =
l∑

i=1

log
N(φ̂i, ẽi)

N(ẽi)
(6)

h3(ẽ,G,a) = log b(φ̂0 | m̂− φ̂0) (7)

• Two feature functions cope with the reordering of source
phrases: they are defined in terms of the distancedi be-
tween the positionπi,1 of the first word of the source phrase
f̃(ai) and the center̄πi−1 of the previous one. In the case
of confusion networks, the true distance after the removal
of ε-words should be taken into account. As in general this
distance can be determined only when all intermediate po-
sitions have been covered, an expected valued̄i is computed
if this is not the case.
Monotone and non-monotone position coverage are, respec-
tively, modelled by:

h4(ẽ,G,a) =
l∑

i=1

t(πi, φi, π̄i−1) δ(πi >= π̄i) (8)

h5(ẽ,G,a) =
l∑

i=1

t(πi, φi, π̄i−1) δ(πi < π̄i) (9)

where

t(πi, φi, π̄i−1) = −|d̄i| log
φi∏

k=2

δ(πi,k − πi,k−1 = 1)

Notice that the above definition inhibits the coverage of not
contiguous columns of the CN.
• A feature assigns uniform probabilities to remaining posi-
tions covered by thenull word

h6(ẽ,G,a) = log
1

φ0!
(10)

• A feature models the phrase-based lexicon:

h7(ẽ,G,a) =
l∑

i=0

log
N(f̃(ai), φ̂i, ẽi)

N(φ̂i, ẽi)
(11)

wheref̃(ai) is simply the phrase obtained by concatenating
real words aligned with̃ei. Phrase-pair statistics can be au-
tomatically extracted from a word-aligned parallel corpus in
various ways (e.g. see [10]).



• A feature accounts for the length of a realization of the
CN through the following function:

h8(ẽ,G,a) =
l∑

i=0

| f̃(ai) | (12)

• The last feature function measures how probable a real-
ization f is within the CNG. By rearranging the terms in
(3) and taking the logarithm:

h9(ẽ,G,a) =
l∑

i=0

log
φi∏

h=1

pπi,h,ψi,h
(13)

The above feature functions permit to express the cost of
generating a partial solution of lengthi in terms of the cost
S of the corresponding steps of the generative process:

R∑
r=1

hr(ẽi
0,G, ai

0)=
i∑

t=0

S(C, πt, π̄t−1, ψt, ẽt, ẽt−1, ẽt−2)(14)

Notice that the cost of step 0 only depends onπ0 andψ0.

3.5. Decoding Algorithm
Through the log-linear model, the approximate search crite-
rion (4) can be rewritten as:

ẽ∗ ≈ arg max
ẽ

max
a∈A(G,ẽ)

R∑
r=1

λrhr(ẽ,G,a) (15)

According to thedynamic programmingparadigm, the op-
timal solution can be computed through a recursive formula
which expands and recombines previously computed partial
theories. A theory can be described by itsstate, which only
includes the information needed for its expansion; two par-
tial theories sharing the same state are considered identical
(indistinguishable) for the sake of expansion and are recom-
bined.
More formally, letQi(s) be the best score among all partial
theories of lengthi sharing the states, pred(s) the set of
partial theories which can be expanded into a theory of state
s, andG(s′, s) be the cost of such expansion.
The scoreQi(s) can be defined recursively with respect to
the lengthi as follows:

Qi(s) = max
th′∈pred(s)

Qi−1(s(th′)) + G(s(th′), s) (16)

with a suitable initialization forQ0(s).
Given the log-linear model described in the previous sec-
tion, the states(th) of a partial theoryth includes the cov-
erage setC, the center of the last ceptπ̄, and the last two out-
put phrases̃e′ andẽ. A theory of states = (C, π̄, ẽ′, ẽ) can
be only generated from one of states′ = (C \ π, π̄′, ẽ′′, ẽ′).

In other words, a new output phraseẽ is added with fertil-
ity φ = |π|, columnsπi are covered and wordsψi are se-
lected. Notice that ifφ = 0 the center remains unaltered, i.e.
π̄′ = π̄. The possible initial statess = (π0, π̄0, ε, ε) corre-
spond to partial theories with no target phrases and with all
φ0 words identified byπ0 andψ0 covered by the null word
ẽ0. Notice thatπ̄0 is not used in the computation. Hence,
eq. 16 relies on the following definitions:

G(s′, s) = max
ψi

S(C, πi, π̄i1−, ψi, ẽi, ẽi−1, ẽi−2) (17)

Q0(s) = max
ψ0

S(π0, ψ0) (18)

The scoreQ∗ of the optimal solutioñe∗ can be searched
among theories of any lengthi which are in a final states,
i.e. covering all columns ofG:

Q∗ = max
ẽ

max
a

R∑
r=1

λrhr(ẽ,G,a) (19)

= max
i,s is final

Qi(s) (20)

Notice that a decoder for text strings is essentially identical,
as any string can be seen as a CN with one word per column.
The complexity of the algorithm is

O

(
2m m3 φmax ψφmax

max

(
m

φmax

)
|Ẽ |3

)

whereψmax is the largest depth of the CN, andφmax is the
maximum fertility of the target phrases. Although the num-
ber of possible strings within the CN is super-polynomial
with respect to its depth, the impact on the algorithm’s com-
plexity is only polynomial.

3.6. Complexity reduction
In order to reduce the huge number of theories to generate,
four approximations are introduced in the algorithm:

• Beam search: at each expansion less promising theo-
ries are removed by applyingthresholdandhistogram
pruning criteria to all the theories covering the same
set of source positions, and to all the theories with the
same output length.

• Reordering constraints: columns to be covered are
selected by applying the so-called IBM constraint;
moreover, the maximum distortion is also limited to
some valueV . In this work a monotone search (V =
1) is performed. Notice that phrase-based translation
permits anyway intra-phrase re-ordering.

• Lexicon cutoff: for each source phrase, only the most
probable phrases are taken as translation alternatives,
i.e. up to .95 probability and no more than 30.

• Confusion network cutoff: less input words are con-
sidered in the source CN by deleting termswj,k

which fall outside a given percentile.



4. N -BEST APPROACH

An alternative way to define the setF(o) is to take theN
most probable hypotheses computed by the ASR system,
i.e. F(o) = {f1, . . . , fN}. By taking a maximum approxi-
mation overF(o), and assuming thatPr(ẽ, f | o) = Pr(f |
o) Pr(ẽ | f) 1, we get the search criterion:

ẽ∗ ≈ arg max
n=1,..,N

Pr(fn | o)max
ẽ

Pr(ẽ | fn) (21)

In the equation above one can isolateN problems of text
translation (rightmost maximization), and the recombina-
tion of N results (leftmost maximization). Hence, the
search criterion can be restated as:

ẽ∗n = arg max
ẽ

Pr(ẽ | fn) n = 1, . . . , N (22)

ẽ∗ ≈ arg max
n=1,..,N

Pr(fn | o) Pr(ẽ∗n | fn) (23)

In plain words: first the best translatioñe∗n of each tran-
scription hypothesisfn is searched; then, the best translation
ẽ∗ is selected among{ẽ∗1, . . . , ẽ∗N} according to its score
weighted by the ASR posterior probabilityPr(fn | o).
A phrase-based log-linear model for text translation is em-
ployed which is very similar to the CN decoder. In par-
ticular, featuresh8 and h9 are respectively replaced with
the AM and LM probabilities provided by the ASR system.
Notice that the default value for the AM weight was empir-
ically set to 0.05 to take into account the high dynamics of
AM probabilities.

5. EXPERIMENTAL EVALUATION

The two presented SLT approaches have been experimen-
tally compared on a large vocabulary translation task. The
task consists in translating the European Parliament Plenary
Sessions (EPPS) from Spanish into English. Statistics for
the training, development and test data are given in Table 1.
Two references per sentence were used both for the develop-
ment and the test set. Performance of the two search meth-
ods are measured in terms of BLEU score [11] and decoding
time.
Both approaches share the same modules for pre- and post-
processing, extraction of phrase pairs, generation ofN -
best translations, and estimation of the log-linear parame-
ter through minimum error training. Descriptions of these
modules can be found in [3, 8, 10, 12].
Confusion networks and 1000-best ASR transcriptions were
kindly provided by CNRS-LIMSI, France. From these,N -
best lists (N = 1, 5, 10, 20, 50, 100) and CNs pruned with
different percentiles (p =0, 50, 55, 60, 65, 70) were ex-
tracted. Notice that the CNcn-p00 corresponds to the
consensus decoding transcription [7]. Finally, for the sake

1This means that̃e is stochastically conditional independent from the
acoustic observationso, givenf .

Table 1. Statistics of training, development and test data of
the Spanish-English EPPS Task.

Spanish English
Train Sentences 1 207 740

Words 31 360 260 30 049 355
Vocabulary 139 587 93 995

Dev Sentences 2643
Words 20 289 23 407

Vocabulary 2932 2566
Test Sentences 1073

Words 18 896 19 306
Vocabulary 3302 2772

of completeness, performance on the correct human tran-
scriptions (verbatim ) are also reported.
Weight optimization of the log-linear models was per-
formed on the development set by applying a minimum er-
ror training procedure [12]. In particular, 100 alternative
translations for each of theN -best transcriptions and 1000
for the confusion network were generated by the respec-
tive decoders. Notice that a separate optimization was per-
formed for eachN -best and CN condition.
Table 2 reports the average number of alternative ASR tran-
scriptions processed in input (input aver. size) and the min-
imum word error rate (input WER) that was found in them.
Figures are provided for the development and test sets. No-
tice that for theN -best case, the average input size is lower
than N because for many short sentence the ASR search
space was relatively small. Finally, BLEU score and aver-
age MT decoding time are reported.
Statistics of Table 1 show that sentences of the test set are
longer than those of the development set, and this is re-
flected by the larger decoding time of both systems, and the
larger size of the CNs. It is also worth noticing that the test
set is significantly more difficult than the development set
in terms ofWERperformance and, consequently, in terms of
BLEU score.
Concerning translation performance, we can notice that
BLEU score decreases on the test set by about 10% rela-
tive, when moving fromverbatim transcription to ASR
output.
The CN-based decoder performs slightly better than the
one based onN -bests, but the difference is not significant.
One advantage of the CN-based decoder is however its effi-
ciency; in fact, with comparable decoding time, it translates
a significantly larger amount of hypotheses with respect to
the N -best decoder. Unfortunately, for some reason, the
quality of these hypotheses results poorer than that of the
N -best lists, as shown inWERcolumn.
With respect to a conventional SLT translation system, only
exploiting one ASR hypothesis, the best translation perfor-
mance were achieved by the CN decoder. On the develop-
ment set, the configurationcn-p60 improved the BLEU



Table 2. For each kind of input, statistics and performance about the development and the test sets are reported: average
number of hypotheses, ASRWER, BLEUscore, and MT decoding time.

DEV TEST
input input BLEU decoding input input BLEU decoding

aver. size WER time aver. size WER time
verbatim 1 0 45.78 0.6 1 0 40.84 1.7
1-best 1 11.77 40.17 0.6 1 14.60 36.64 2.1
5-best 4 8.12 40.63 2.8 5 11.90 36.47 10.5
10-best 8 6.99 40.83 5.3 9 11.02 36.75 20.4
20-best 13 6.19 41.03 9.8 16 10.20 36.55 38.9
50-best 25 5.40 40.85 20.6 34 9.47 36.66 84.2
100-best 38 5.07 40.87 33.2 56 9.09 36.68 135.3
cn-p00 1 11.67 40.30 4.0 1 14.46 36.54 28.4
cn-p50 4 9.42 41.06 5.8 32 11.86 37.14 31.2
cn-p55 13 8.93 41.21 6.3 150 11.32 37.23 34.7
cn-p60 194 8.41 41.24 6.7 1284 10.71 37.21 37.9
cn-p65 1,359 7.91 41.21 7.4 9816 35.07 37.05 43.9
cn-p70 15,056 7.53 41.23 27.4 228461 9.71 37.14 54.6

score from 40.17% to 41.24%, which on the test set corre-
sponds to a BLEU score increment from 36.64% to 37.21%.

6. CONCLUSIONS

In this paper we presented a novel approach to tightly inte-
grate ASR and SMT. The presented experiments focused
on the search algorithm only, hence no re-scoring mod-
ule was applied, which could be beneficial to improve per-
formance. In particular, among the potentially useful fea-
tures that could be applied after the CN decoder there is the
source language LM, which could account for the linguis-
tic plausibility of each realization within the CN. Moreover,
the use of additional lexicon models and a 4-gram target lan-
guage model for rescoring and/or decoding had been proved
to be effective in very recent experiments [10]. Finally, the
relatively high WER of the CN will be investigated and pos-
sible alternative ways to generate more accurate CNs will be
considered.
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