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Abstract
This paper describes the ITC-irst systems used in the TC-STAR’06 evaluation campaign for transcribing parliamentary speeches delivered
in both English and Spanish languages. Systems use a three pass decoding strategy with cluster-based unsupervised acoustic models
adaptation. Both first and second decoding passes use a trigram language model, while the third decoding pass employs a fourgram
language model. Acoustic and language models of both English and Spanish transcription systems were trained exploiting the language
resources released for the TC-STAR evaluation campaign of year 2006. An additional language resource, i.e. a 200M word text corpus
distributed by the Linguistic Data Consortium (LDC), was also utilized to train language models for English. The Word Error Rates
(WERs) of the primary English transcription system were 13.0% and 11.0% on the EPPS English development and evaluation data sets,
respectively. On both the Spanish development and evaluation data sets, which include both EPPS and Spanish Parliament speech data,
the transcription system provided a WER of 13.3%.

1. Introduction
In this paper, the main features of the ITC-irst transcription
systems used in the TC-STAR’06 evaluation campaign are
described.
ITC-irst submitted results for both ’06 English and Span-
ish evaluation data sets. While the ’06 English evaluation
data set includes only EPPS (European Parliament Plenary
Sessions) data, the ’06 Spanish evaluation set includes data
stemming from both EPPS and Spanish Parliament. Fur-
thermore, a direct comparison of the capabilities of the
transcription systems adopted in TC-STAR 2005 and 2006
evaluation campaigns will be given.
With respect to the transcription systems developed for the
’05 evaluation campaign, the systems used in the ’06 cam-
paign feature: an audio partitioner for identifying and clus-
tering speech segments, Heteroscedastic Linear Discrim-
inant Analysis (HLDA) for augmenting acoustic features
discrimination capabilities, and a three pass decoding strat-
egy. The third decoding pass is carried out by exploiting
a fourgram language model (LM), on a restricted search
space given by word lattices generated in the second pass.
The paper is organized as follows. Main features common
to all the ITC-irst transcription systems are presented in
Section 2. The transcription system developed for the EPPS
English task is described in Section 3, while the system de-
veloped for the EPPS Spanish task is described in Section
4. Experiments and results are reported in Section 5. Some
conclusions are presented in Section 6.

2. Transcription system overview
The ITC-irst transcription system consists of two main
components: the audio partitioner and the speech recog-
nizer.
The aim of the audio partitioner is to divide the continuous
audio stream into homogeneous non-overlapping segments

(1) Visiting student - Universitat Politecnica de Catalunya,
Barcelona, Spain.

(2) G. Stemmer is now with Siemens AG, Corporate Technol-
ogy, Munich, Germany.

and to cluster these segments into homogeneous groups.
The partitioner consists of three main modules (Brugnara
et al., 2002): the segmenter, the classifier and the clustering
module.
Audio Segmentation. Usually segmenting an audio stream
means detecting the time indexes corresponding to changes
in the nature of audio, in order to isolate segments that are
homogeneous in terms of bandwidth and speaker. How-
ever, in the current version of the ITC-irst partitioner, the
segmenter just identifies the region of the audio stream with
high energy through the application of a start-end point ac-
tivity detector. The identification of acoustically homoge-
neous segments within these regions is embedded into the
classification process.
Segment Classification. An intermediate goal of the parti-
tioning stage is to identify each acoustically homogeneous
segment and to classify it in terms of broad acoustic classes.
For this purpose, acoustic classes are modeled by a set of
Gaussian Mixture Models (GMMs) and the classification
is done applying the Viterbi algorithm to a search space in
which the activation of a new class is possible at any time:
this is accomplished through a network with loop topol-
ogy. This process induces a refinement of the raw seg-
mentation made by the segmenter, since the time indexes
of class changes correspond to new segment boundaries.
Segment Clustering. Identified acoustically homogeneous
segments are finally clustered employing a method (Cet-
tolo, 2002) based on the Bayesian Information Criterion
(BIC).
The partitioner is applied to each audio file and the speech
recognizer, which uses continuous density hidden Markov
Models (HMMs), generates a word transcription for each
speech segment. In addition, initial and final temporal in-
stants of each word are supplied.
Word transcription is generated in three passes.
First pass: Preliminary Decoding Step. This step gener-
ates an initial word transcription which is used as a supervi-
sion for performing cluster-based normalization of acoustic
features and acoustic model (AM) adaptation. Continuous
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density triphone HMMs and a trigram language model are
used in this step.
Second pass: Word Lattice Generation. The second de-
coding step, exploiting normalized acoustic features and
adapted acoustic models, generates the best word hypothe-
sis, as well as word lattices.
Third pass: Final Decoding Step. In the third decoding
step a word graph is generated for each word lattice pro-
duced in the second step. First, a bigram constrained word
graph is computed for each given word lattice and a pruning
procedure, based on estimates of posterior probabilities, is
applied to it (this procedure allows to reduce the average
word graph size of about 90% without significant increase
in graph error rate). Then, an expansion algorithm, sim-
ilar to the one reported in (Weng et al., 1998), allows to
introduce fourgram LM probabilities in the resulting final
word graph. This latter one defines a reduced search space
over which word hypotheses are rescored using the acous-
tic models of the second pass adapted with the supervision
of the second pass itself.

2.1. Acoustic models

Acoustic models used in all decoding steps are state-tied,
cross-word, gender-independent triphone HMMs. Output
probability densities are defined by mixtures of Gaussian
functions having diagonal covariance matrices. A phonetic
decision tree was used for tying states and for defining the
context-dependent allophones.
The acoustic front-end employed in the first decoding step
is different from the one utilized in the second and third
passes. The details of acoustic modeling adopted in the
various decoding passes are given below.
First decoding step. The observation vectors for
HMMs consist of 13 Mel Frequency Cepstral Coefficients
(MFCCs) extracted using a 20ms Hamming window and
a frame step of 10ms. Cluster-based Cepstral Mean and
Variance Normalization (CMVN) is performed to ensure
that each segment cluster contains acoustic observations ex-
hibiting zero mean and unit variance. Successively, first
and second order time derivatives are computed to form a
39-dimensional feature vector.
To train HMMs a variant of the Constrained MLLR based
Speaker Normalization (CMLSN) procedure (Stemmer et
al., 2005) is adopted, as briefly summarized below.

• A simple target model, that is a GMM with 1024 com-
ponents, is trained.

• For each speech segment cluster in the training data, a
constrained MLLR (CMLLR) transform (Gales, 1998)
is estimated w.r.t. the target GMM.

• The CMLLR transforms are applied to the feature vec-
tors. The resulting transformed/normalized feature
vectors are supposed to contain less speaker, channel,
and environment variability.

• A conventional Maximum Likelihood (ML) training
procedure is used to initialize and train the recogni-
tion models on the normalized data, including state
tying and the definition of the context-dependent al-
lophones.

Second and third decoding steps. Segment-based Cep-
stral Mean Normalization (CMN) is applied to the 13
MFCCs, obtaining zero mean acoustic observations for
each segment (no variance normalization is performed in
this case). Then, first, second and third order time deriva-
tives are computed to form a 52-dimensional feature vector.
HLDA projection is then performed to obtain observation
vectors with 39 components.
The HMM adaptive training procedure is described in (Giu-
liani et al., 2004; Giuliani et al., 2006; Stemmer and Brug-
nara, 2006) and is summarized below.

• The HLDA transformation is estimated w.r.t. a set
of reference models. Reference models are triphone
HMMs with a single Gaussian density for each state;
they are estimated on the 52-dimensional acoustic ob-
servation space.

• The HLDA transform is applied to training data to ob-
tain 39-dimensional acoustic observation vectors.

• A set of target models is generated for the acoustic
space obtained through HLDA projection. The target
models are tied-states triphone HMMs with a single
Gaussian density for each state.

• For each cluster of speech segments in the training
data, a CMLLR transform is estimated w.r.t. the target
models.

• The CMLLR transforms are applied to the feature vec-
tors.

• ML training is performed on the normalized features.

By exploiting the output ot the first decoding step, data are
normalized through cluster based CMLSN normalization,
and acoustic model adaptation is carried out. Just Gaus-
sian means are adapted through the application of a number
of simple ‘shift’ transformations estimated in the MLLR
framework. A regression class tree is employed, in con-
junction with a low occupancy count threshold (i.e. 100),
for dynamic allocation of regression classes. For each re-
gression class only a bias vector is estimated.

3. English transcription system
This section describes specific features of the system used
to cope with EPPS English task in the ’06 TC-STAR eval-
uation campaign.

3.1. Acoustic models
For training acoustic models the EPPS English training cor-
pus, released for the ’06 TC-STAR evaluation campaign,
was exploited. This data set consists of about 176 hours of
audio recordings partitioned into: about 101h of transcribed
audio data and about 75h of untranscribed audio data. Un-
transcribed speech data were automatically transcribed us-
ing an early version of the transcription system.
The acoustic models used in the first decoding pass have
about 7600 tied states and about 243000 output Gaussian
densities.
Acoustic models used in the second and third decoding
steps have about 7700 tied states and about 244000 Gaus-
sian densities.
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3.2. Language models

The trigram Language Model, used in the first and second
decoding steps, was trained on:

• English EPPS final text edition corpus, about 36M
words (from parallel texts).

• An out-of-domain text corpus of about 200M words,
released by LDC, containing broadcast news tran-
scriptions.

The resulting LM was then adapted to the manual transcrip-
tions of the EPPS audio data released for acoustic model
training of ’06 TC-STAR evaluation. These texts consisted
of about 0.7M words. The LM adaptation algorithm is the
modified shift-beta one described in (Bertoldi and Federico,
2004). In a similar way, a fourgram LM, to be used in the
third decoding step, was trained.
The trigram LM and the lexicon were used to build the
static decoding graph with about 25M states and 23M la-
beled arcs. The network has a tree based topology, and
exploits the tail sharing technique to reduce redundancy
(Brugnara and Cettolo, 1995);
The use of additional training text data (i.e. those stem-
ming from the LDC corpus mentioned above), corresponds
to the “public” training condition defined in the TC-STAR
evaluation. For comparison purposes, trigram and fourgram
LMs were also trained exploiting only the English EPPS
text data. This corresponds to the “restricted” training con-
dition defined in the TC-STAR evaluation.
In all cases, ”true case” word transcription was ensured by
adopting a ”true case” recognition vocabulary. This vocab-
ulary was shared by all LMs.

3.3. Pronunciation lexicon

The pronunciations in the lexicon are based on a set of 45
phones. The lexicon contains 49k words, and was gener-
ated by merging different source lexica for American En-
glish (LIMSI ’93, Cmudict, Pronlex). Furthermore, pho-
netic transcriptions for few hundreds of words were manu-
ally generated. Note that not all of the words in the manual
transcriptions of ’06 EPPS English acoustic training set are
present in the lexicon.
Finally, additional HMMs were used for modeling the
following acoustic events: one HMM for “silence”, five
HMMs for filler words and one HMM for out of vocabu-
lary words (used only during training/adaptation).

3.4. Punctuation module

Punctuation is added to the recognized word sequence in
a final post-processing step. Punctuation marks (including
an empty symbol) are assigned to each recognized word ac-
cording to the score provided by an artificial neural network
(ANN) previously trained. Training is performed exploit-
ing both the speech signal of the word sequence and the
related temporal word boundaries provided by the speech
recognizer: prosodic features are extracted on a word ba-
sis. Almost all of these features are related to word du-
ration, word energy, and pause following the word itself
(if present). For the future we plan to add also the pitch.
Other non-acoustic features include Part of Speech (PoS)

tags, which are added using the SVMTool1 developed at the
Universitat Politecnica de Catalunya (UPC). Finally, the set
of features related to each word is augmented with the fea-
tures of the ±2 adjacent words. We have used 90 prosodic
features for English and 152 for Spanish (102 prosodic plus
50 PoS).
Punctuation symbols are grouped into 4 classes: full stop
(which includes “.” and “!”), comma (“,” “:” and “;”), ques-
tion mark (“?”) and no mark. The training of the ANNs
is performed on 40 hours of transcribed speech data, both
for English and Spanish. During training, a single neural
network learns to associate a punctuation mark with each
word. During classification, the neural network adds a
punctuation mark, with an associated probability, to each
recognized word.

4. Spanish transcription system
For Spanish, EPPS TC-STAR’06 acoustic training corpus
consists of about 173 hours: about 100h of transcribed au-
dio data and about 73h of untranscribed audio data.
Similarly to English, an automatic system was used to tran-
scribe untranscribed data.
HMMs used in the first decoding pass have about 4100 tied
states and about 65000 Gaussian densities, while HMMs
used in both second and third decoding steps have about
5300 tied states and about 168000 Gaussian densities.
For Spanish, only the restricted training condition has been
exploited. A trigram language model was trained on: the
Spanish EPPS final text edition, the Spanish Parliament
Texts and EPPS parallel corpora, about 79M words in to-
tal.
Also in this case, the resulting LM was adapted using about
880K words coming from manually transcribed EPPS au-
dio data.
The LM and the lexicon allowed to generate the static Finite
State Network (FSN) with about 8.6M states and 8.1M la-
beled arcs, used in both the first and second decoding steps.
Similarly to English, a “true case” recognition vocabulary
and LM was used to ensure “true case” word transcriptions.

4.1. Pronunciation Lexicon

The phone units used in the pronunciations lexicon are
31; in addition, there are models representing: hesita-
tions, background noises and breaths. The lexicon con-
tains 57K words, whose phonetic transcriptions were au-
tomatically generated using a set of grapheme-to-phoneme
rules. This tool can handle acronyms and multiple pronun-
ciations; some rules were added to handle some common
foreign patterns. Finally, some hundreds of foreign names
were manually corrected.

4.2. Punctuation module

For Spanish punctuation is added to word transcriptions in a
manner similar to English. The punctuation module, based
on a neural network, exploits 152 features (102 prosodic +
50 PoS). The neural network is trained on about 40 hours
of transcribed speech data.

1http://www.lsi.upc.es/˜nlp/SVMTool/
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dev05 eval05 dev06 eval06
Res.3-gram’05 OOV 0.6% 0.7% 0.9% 0.8%
Res.3-gram’06 OOV 0.4% 0.4% 0.4% 0.4%
Pub.3-gram’06 OOV 0.4% 0.4% 0.4% 0.4%
Pub.4-gram’06 OOV 0.4% 0.4% 0.4% 0.4%
Res.3-gram’05 PP 90 106 122 141
Res.3-gram’06 PP 87 103 119 136
Pub.3-gram’06 PP 92 106 129 138
Pub.4-gram’06 PP 85 97 118 127

Table 1: OOV rates and perplexities (PP) on the EPPS En-
glish development and evaluation data sets (dev05, eval05,
dev06 and eval06) with several language models.

5. Experimental results
5.1. EPPS English

Table 1 gives both OOV rates and perplexities computed
with three trigram and one fourgram LMs on the EPPS En-
glish test sets of both ’05 and ’06 TC-STAR evaluation
campaigns. The Restricted’05 trigram LM was used by
the primary system developed for the official ’05 TC-STAR
evaluation. Major differences between the ’05 and ’06 re-
stricted LMs are listed below:

• the different number of words in the recognition vo-
cabulary;

• the use of a “true case” recognition vocabulary in the
Restricted’06 LM and of a “case insensitive” vocabu-
lary in the Restricted’05 LM;

• the different amounts of manual transcriptions avail-
able for LM adaptation, about 0,37M words for the
Restricted’05 LM and about 0,7M words for the Re-
stricted’06 LM.

The Public’06 LMs (both trigram and fourgram) have been
used in the official ’06 TC-STAR evaluation. They were
trained, as described in Section 3.2., using additional pub-
lically available, out-of-domain text data.
In computing perplexities and OOV rates transcriptions of
truncated words were omitted. It can be noted that the Re-
stricted’06 trigram LM gives lower perplexities than both
the Restricted’05 trigram LM, and the Public’06 trigram
LM.

dev05 eval05 dev06 eval06
1st decoding pass 15.8 16.3 23.6 20.3
2nd decoding pass 13.6 13.4 17.6 14.9

Table 2: Recognition results (% WER) on the EPPS En-
glish development and evaluation data sets (dev05, eval05,
dev06 and eval06) achieved with the primary English sys-
tem developed for the ’05 TC-STAR evaluation campaign.
Intermediate recognition results, after the first decoding
step, are also reported.

Tables 2 and 3 reports recognition results achieved, on the
EPPS English development and evaluation data sets, by the
English primary systems developed for the ’05 and ’06 TC-
STAR Evaluation campaigns. Intermediate recognition re-
sults are also given in the Tables.

eval05 dev06 eval06
1st decoding pass 12.5 16.7 14.9
2nd decoding pass 10.3 13.6 11.7
3rd decoding pass 9.7 13.0 11.0

Table 3: Recognition results (% WER) on the EPPS En-
glish development and evaluation data sets (eval05, dev06
and eval06) achieved with the primary EPPS English sys-
tem developed for the ’06 TC-STAR evaluation campaign.

In addition to the different amount of EPPS training data
available in the two evaluation campaigns and exploited for
system training, the ’05 and ’06 primary systems differ in
the following aspects:

• Audio segmentation. For the development and evalu-
ation data sets released for the ’05 TC-STAR evalua-
tion boundaries of speech segments to be transcribed
were provided. All recognition experiments reported
in this paper exploited this information. Instead, for
the development and evaluation data sets released for
the ’06 TC-STAR evaluation speech segments bound-
aries were not provided and needed to be detected au-
tomatically.

• Acoustic feature extraction. As seen above, in the ’06
system, an HLDA acoustic feature projection is em-
bedded into the acoustic front-end for acoustic models
used in the second and third decoding steps. Effec-
tiveness of HLDA was proved by training and testing
transcription systems under the restricted conditions
defined for the ’05 TC-STAR evaluation campaign.
Comparative results, using or not using HLDA, are
given in Table 4 for both English and Spanish dev05
an eval05 evaluation sets.

English Spanish
dev05 eval05 dev05 eval05

Reference’05 13.6 13.4 11.8 12.4
HLDA’05 13.2 12.6 10.8 12.0

Table 4: Recognition results (% WER) on the EPPS En-
glish and Spanish ’05 development and evaluation data sets
(dev05, eval05) achieved with the reference English and
Spanish systems, either exploiting or not HLDA.

• Decoding strategy. The ’06 system adopts a three pass
decoding strategy, with a fourgram LM rescoring in
the third step, while a two pass decoding strategy ex-
ploiting a trigram LM was adopted by the ’05 system.
A relative WER reduction of about 5%, as can be de-
rived from Table 3, has been reached on the English
evaluation set with the addition of the third decoding
step.

• Language model. The ’06 system features a
“true case” recognition vocabulary and the LM was
trained exploiting additional out-of-domain language
resources (public training condition). Instead, the ’05
primary system was trained only on the EPPS text data
(restricted training conditions) and had a case insensi-
tive vocabulary.
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Public’06 Restricted’06
1st decoding pass 14.9 15.7
2nd decoding pass 11.7 12.0
3rd decoding pass 11.0 11.7

Table 5: Recognition results (% WER) on the ’06 EPPS En-
glish evaluation data set achieved with the primary ’06 sys-
tem (Public’06) and with a contrastive ’06 system exploit-
ing LMs estimated only on EPPS text data (Restricted’06).

Case ins. Case sens. Case ins. Case sens.
+ punct. + punct.

11.0 11.9 18.7 19.5

Table 6: Recognition results (% WER) on the ’06 EPPS
English evaluation data set achieved with the ’06 primary
system. Recognition results are computed in several man-
ners: case insensitive, case sensitive, case insensitive with
punctuation and case sensitive with punctuation.

• Punctuation. The automatic punctuation module de-
scribed in Section 3.4 has been utilized. Note that no
punctuation was provided by the ’05 system.

To measure the benefit of adding out-of-domain text data to
train the LMs, Table 5 reports recognition results achieved
in both public and restricted conditions. As previously
seen, the public training condition exploits the 200M words
broadcast news LDC corpus, in addition to the EPPS final
text edition corpus, used in the restricted training condition.
Table 6 reports recognition results computed in four differ-
ent manners: case insensitive, case sensitive, case insensi-
tive with punctuation and case sensitive with punctuation.
It can be noted that in case sensitive scoring recognition
results are worse than those obtained with case insensi-
tive scoring. However, the decrease in performance is not
dramatic. Taking into account punctuation during case in-
sensitive scoring affect substantially recognition results for
two main reasons. Firstly, the punctuation module used is
still in an initial version and further work is needed. Sec-
ondly, punctuation in reference transcriptions is ambiguous
and many punctuation marks should be considered as op-
tional deletable by the scoring tool. Automatic punctuation
is a critical issue that will merit further attention in the TC-
STAR future activity.
Table 7 reports the execution time for the different process-
ing steps performed by the EPPS English primary system
in transcribing the EPPS English evaluation data set. The
source signal duration for this data set was 11566.1s. The
total execution time was 266736s, as measured on an In-
tel(R) Xeon(TM) 3.00GHz processor with 1024 KB cache
and 4GB memory, roughly corresponding to 23.0 times the
source signal duration.
Execution time for the first decoding pass includes audio
stream partitioning and acoustic data normalization, while
the execution time of the second decoding pass includes the
execution time for acoustic data normalization and acoustic
model adaptation.

1st decoding pass 128700 (11.1xRT)
2nd decoding pass 96883 (8.40xRT)
word graph generation 9240 (0.80xRT)
3rd decoding pass 29375 (2.50xRT)
punctuation 2538 (0.21xRT)
Total 266736 (23.0xRT)

Table 7: Execution times (in seconds) of the different pro-
cessing steps for the English transcription system on the
’06 EPPS English evaluation data set.

dev05 eval05 dev06 eval06
Res.3-gram’06 OOV 0.6% 0.7% 0.6% 0.6%
Res.4-gram’06 OOV 0.6% 0.7% 0.6% 0.6%
Res.3-gram’06 PP 84 97 107 102
Res.4-gram’06 PP 77 89 97 93

Table 8: OOV rates and perplexities (PP) of the Spanish de-
velopment and evaluation data sets (dev05, eval05, dev06
and eval06) with the restricted ’06 LMs.

5.2. EPPS Spanish

Table 8 gives OOV rates and perplexities computed with the
restricted condition LMs (Res.[3-4]gram’06) on the Span-
ish dev and test sets of both ’05 and ’06 TC-STAR evalu-
ation campaigns. Similarly to English, note the increased
perplexities between dev-eval’05 and dev-eval’06 tasks.
Tables 9 and 10 report recognition results achieved, on
the Spanish development and evaluation data sets, with the
Spanish primary systems developed for the ’05 and ’06 TC-
STAR Evaluation campaigns. As previously mentioned, the
Spanish ’06 dev and eval sets include speech data stem-
ming from both EPPS and Spanish Parliament. Intermedi-
ate recognition results are also reported in the tables. Note
that differences between the ’05 and ’06 primary Spanish
systems are comparable to the corresponding ones given
for the English case.
Table 11 reports recognition results computed in four dif-
ferent manners: case insensitive, case sensitive, case insen-
sitive with punctuation and case sensitive with punctuation.
Comments similar to the English case can be given for this
table.
Table 12 reports the execution time for the different pro-
cessing steps performed by the Spanish primary system in
transcribing the Spanish evaluation data set. The source
signal duration for this data set was 26003s. The total
execution time was 222983s, as measured on an Intel(R)
Xeon(TM) 3.00GHz processor with 1024 KB cache and
4GB memory, roughly corresponding to 8.58 times the
source signal duration.

dev05 eval05 dev06 eval06
1st decoding pass 14.0 14.7 23.7 25.8
2nd decoding pass 12.7 13.7 18.9 18.7

Table 9: Recognition results (% WER) on the Spanish de-
velopment and evaluation data sets achieved with the pri-
mary Spanish system developed for the ’05 TC-STAR evalu-
ation campaign. Intermediate recognition results, after the
first decoding step, are also reported.
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dev05 eval05 dev06 eval06
1st decoding pass 13.3 14.4 21.9 24.4
2nd decoding pass 10.0 11.1 13.7 13.9
3rd decoding pass 9.8 10.7 13.3 13.3

Table 10: Recognition results (% WER) on the Spanish de-
velopment and evaluation data sets achieved with the pri-
mary Spanish system developed for the ’06 TC-STAR eval-
uation campaign.

Case ins. Case sens. Case ins. Case sens.
+ punct. +punct.

13.5 14.7 22.6 23.6

Table 11: Recognition results (% WER) on the Spanish ’06
evaluation data set achieved with the ’06 primary system.
Recognition results are computed in several manners: case
insensitive, case sensitive, case insensitive with punctua-
tion and case sensitive with punctuation.

6. Conclusions
In this paper we have described the transcription systems
used in the TC-STAR ’06 evaluation campaign and we have
given the results obtained on the related evaluation data
sets. Differences with the systems developed for the ’05
evaluation campaign have also been presented and their im-
pact on recognition performance discussed.
Results show that systems developed for the ’06 evaluation
campaign outperform systems developed for the ’05 evalu-
ation campaign, both for English and Spanish languages.
Table 13 reports the relative WER reduction, between the
’06 and 05’ primary transcription systems, obtained on both
the English and Spanish ’05 and ’06 evaluation sets.
Gain in performance is partially due to the availability of
additional training data and partially to system improve-
ments. In particular, the use of HLDA-derived acoustic
features and the adoption of a three decoding pass strategy
ensure a tangible performance improvement over systems
developed for the ’05 evaluation campaign.
Furthermore, using additional out of domain text data for
LM training showed to be effective for the EPPS English
system. Future work will be devoted to better exploit out of
domain data to train fourgram LMs to be used in the third
decoding step. Future activities will also encompass ef-
fort to improve unsupervised cluster-based acoustic model
adaptation by exploiting, for example, the word lattice in-
stead of only the best word hypothesis. Another future ac-
tivity will address the usage of a fourgram LM already in
the first and second decoding steps, avoiding the generation
of word graphs for LM rescoring.
Not much attention has been devoted so far to the compu-
tational costs of the different processing steps of the tran-
scription process. Future work will be also devoted to speed
up the transcriptions process having in mind real applica-
tion requirements.
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1st decoding pass 95398 (3.67xRT)
2nd decoding pass 89164 (3.43xRT)
word graph generation 20231 (0.78xRT)
3rd decoding pass 13490 (0.52xRT)
punctuation 4700 (0.18xRT)
Total 222983 (8.58xRT)

Table 12: Execution times (in seconds) of the different pro-
cessing steps for the Spanish transcription system on the
Spanish ’06 evaluation data set.

eval05 eval06
English 27.6 26.2
Spanish 21.9 28.9

Table 13: % WER relative reduction, between the ’06 and
’05 English and Spanish transcription systems, obtained on
the ’05 and ’06 evaluation sets.
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