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Abstract
This paper reports on several experiments performed during the development of the ITC-irst transcription system for the TC-STAR ’06
evaluation campaign. The aim is to find methods of exploting a set of alternative hypotheses produced by different systems to derive a
transcription that is more acccurate than any of these. The most used technique for combining alternative hypotheses relies on the ROVER
technique. In this work we found that another approach, based on adaptation of a reference system, may provide some advantage over
that technique.

1. Introduction
It has often been observed that different Automatic Speech
Recognition (ASR) systems can make errors of differ-
ent nature, while demonstrating similar Word Error Rates
(WER). The most notable example of a method for ex-
ploiting this feature is the ROVER system (Fiscus, 1997),
a postprocessing module that first combines all the differ-
ent hypotheses in a single graph, and then rescores the paths
along it by a ”voting” procedure that takes into account mu-
tual agreement between word hypotheses, as well as, poten-
tially, confidence scores attributed by the systems.
ROVER combination of the output of different systems has
been shown to result in a significant reduction in WER with
regard to any of the system entering in the combination,
provided they are different enough to produce complemen-
tary errors. This characteristic is also exploited systemati-
cally in some systems, including the IBM and UKA system
described elsewhere in these proceedings. While this is a
convenient and effective way of exploiting multiple recog-
nition hypotheses, it has some drawbacks. For example, it
can only produce an improved single-best hypothesis, and
no additional information such as word-graphs, hence it
makes sense to consider different ways of combining sys-
tem outputs.

2. Multiple-supervision adaptation
Most of the state-of-the-art automatic transcription sys-
tems, including all the systems used in the TC-STAR Eval-
uation, are based on multi-stage processing. After the first
decoding, one or more additional steps are performed, each
one involving adaptation of an acoustic model and using
the output of a previous step as supervision, therefore us-
ing it as if it was the correct transcription of the input. The
quality of the supervision can greatly influence final perfor-
mance. It is obvious that a lower WER in the supervision
can make the adaptation step more effective, but the be-
havior is not only related to this performance index. The
benefit is significantly larger if the distribution of the er-
rors in the supervision is well diversified with respect to
the errors made by the model under adaptation. For ex-
ample, during the development of the Eval06 system, we
reduced the WER of the first step from 18.9 to 17.1 observ-
ing only a 0.2 improvement in the output of the second step.
In this particular case, the improvement was obtained by
introducing text-independent Constrained Maximum Like-
lihood Speaker Normalization (CMLSN) (Giuliani et al.,
2006; Stemmer et al., 2005) in the first step, while the sec-
ond step already exploits text-dependent CMLSN. Proba-

bly, this resulted only in moving to the first stage some dis-
crimination capability already present in the second stage,
without adding anything really new.
In order to be able to deliver a complete system output,
while still exploiting information provided by several com-
plementary systems, one can consider to put a reference
system in the best conditions to perform the last step, pro-
viding it with an improved supervision. The latter can be
obtained by ROVER combination of the system outputs.
This is what was proposed within the TC-STAR project,
and it has been shown to be a valid technique, able to im-
prove the ROVER combination, as will be shown in some
of the following experiments. With this approach, the rela-
tive importance of the systems is no longer as symmetrical
as it is with the usual ROVER combination. The final per-
formance depends, of course, on the accuracy of the system
used in the last stage, and the weighting of the plausibility
of the alternative hypotheses is still left to ROVER.
The method presented in this work, is still based on a last
step of processing via a ”reference” system. However, it
also leaves to the latter system the task of weighting the
plausibility of the alternative hypotheses.
The method is conceptually straightforward: it consists
of performing the adaptation step on as many replicas of
the audio data as there are supervisions, assigning to each
replica a different supervision. In other words, it merges
the counters that result from adapting the acoustic model
on each individual supervision. Adaptation can be made ac-
cording to any technique, and in this work we compare re-
sults obtained by standard 4-class MLLR, Shift-MLLR, and
their combination. It turns out that the adaptation setup can
significantly change the final performance. It is notewor-
thy that, except in the case of experiments reported in the
following section and labeled as ”Baseline”, adaptation in
our system always includes preliminary CMLSN data nor-
malization, performed with the same supervision. This can
affect the comparison of effectiveness between the meth-
ods. The procedure for each input file, slightly complicated
by the fact that segmentations and lexica are not aligned
among the different systems, is as follows:

• All the word hypotheses generated by different systems
are aligned with a reference segmentation, that in our
case is provided by the ITC-irst audio partitioner. The
segmentation includes a cluster label for each segment,
that will be used in the following steps for performing
cluster-based normalization and adaptation.

• A forced-alignment of the audio data with the word-
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Supervision MLLR S-MLLR Cascade Alternate MLLR6 S-MLLR6
Baseline 16.7 15.0 15.5 15.0 15.0 15.0 15.6
Normalized 13.8 13.6 13.4 13.5 13.8 13.7

Table 1: Performance (WER %) of different adaptation procedures on EPPS-DEV06EN, using the ITC-irst system.

level transcriptions is performed, to identify pronunci-
ation variants. Word in the transcriptions that are outside
the ITC-irst lexicon are mapped to an OOV model.

• Cluster-wise CMLSN normalization is then performed,
where each cluster is made of copies of the segments
with identical labels, possibly with different supervi-
sions.

• Cluster-wise acoustic model adaptation is performed
with the same partitioning of the previous step.

The procedure is certainly more time consuming than a
ROVER combination of the hypotheses, given the need to
carry out adaptation on an expanded audio file, but the time
required for this step is still only a small fraction of the time
needed to generate the input hypotheses.
With this approach, the same portion of the audio data can
contribute to counters of different states, and its influence
is weighted both by agreement between hypotheses and by
the match with the reference model. If the reference sys-
tem is accurate enough, this can be a more detailed balanc-
ing among hypotheses with respect to what can be done by
using hypotheses agreement and confidence measures.
As will be shown by the experiments outcomes, the accu-
racy of the final transcription also depends on the adap-
tation technique. In this context, we observed significant
variations of performance by using, instead of the classical
MLLR based on a few affine transforms, a variant which is
based on many simple transforms, as described in the fol-
lowing.

3. Shift-MLLR
A widely used, effective technique for acoustic model adap-
tation is Maximum Likelihood Linear Regression (Legget-
ter and Woodland, 1995). This technique assumes that the
probability density bs associated to an HMM state s is a
mixture of Gaussian densities, that is: bs(x) ≡ Pr[x|s] =
∑Ns

k=1
ws,kN (x;µs,k,Σs,k), where x is a feature vector.

In its original form, MLLR tranforms each mean µ of
a Gaussian density by means of an affine tranformation,
µ′ = Aµ + c, so that the likelihoods of observation vectors
are given by

∑Ns

k=1
ws,kN (x;Aµs,k + c,Σs,k).

The parameters (A, c) of the transform are estimated, fol-
lowing a Maximum Likelihood criterion, so as to maximize
the likelihoods of the adaptation data according to the trans-
formed model. The technique assumes that the transform is
shared among several Gaussians, otherwise it would simply
return the ML estimate of the means on the adaptation data,
only for the Gaussians that are actually observed. The ap-
propriate degree of tying depends on the size of the adap-
tation set. When used for refining the models at recogni-
tion time, it often happens that the adaptation data are not
enough to reliably estimate a large number of parameters,
and the total number of degrees of freedom is controlled
by limiting the number of different transforms. Though
this helps in avoiding the risk of overtraining, it may also
compromise the detail of the adaptation process, because
Gaussian means that are scattered in the acoustic space are

forced to be transformed by a common transform.
Another way of reducing the degrees of freedom, while pre-
serving a higher level of acoustic resolution, is that of ex-
ploiting a larger number of transform, but impose a smaller
number of parameters to each of them. In this work, we
consider simple tranformations that consist in a shift vector
added to the means, that is µ′ = µ + c. For this kind of
transforms, a reliable estimate can be achieved on a small
amount af data, say a few tens of frames, intead of the hun-
dreds required for estimating a full matrix. The criterion
used for estimation is still ML but, given the strong con-
straints on the form of the transforms, the reestimation for-
mula is particularly simple. If g ≡ N (.;µg,Σg) is any
Gaussian that shares the shift parameter c, γg is the over-
all posterior of g on the adaptation data, and µ̄g is the ML
reestimate of the mean of g, we have:

c =

(

∑

g

γgΣg
−1

)

−1
∑

g

γgΣg
−1(µ̄g − µg)

If the covariance matrices of Gaussians are diagonal, as
is often the case, the above equation translates straightfor-
wardly in a component-wise expression.
We have found that the idea of using such simple transfor-
mation is not new, having already been proposed in (Di-
galakis et al., 1999). In that work, however, the shift (or
bias) transform is used together with dependency modeling
to assign different degrees of tying to matrices and offsets.
In the present work, the basis for tying the transform is the
usual regression tree, built by agglomerative clustering of
the Gaussians. What changes between full tranforms and
shift transforms is the depth at which the tree is exploited.
When using full transforms, at most the first two levels are
used, giving rise to two or four regression classes, while in
the case of the shift transform the full tree is searched until
the node occupancy falls below a threshold. The threshold
itself is much smaller than the one used for matrix estima-
tion, e.g. 50 or 100 frames instead of 1000. The number
of transforms can therefore vary considerably from cluster
to cluster. For example, by looking at the effective usage
of nodes in a typical experiment, we observed a range from
2 to 750, with an average of 155. As already suggested
in (Digalakis et al., 1999), the matrix and bias tranforms
could be estimated together, with different tying schemes.
However, this complicates the expression of the objective
function making optimization harder to achieve. As an eas-
ily realizable approximation, they propose to use a cascade
combination. That is, first estimate the full tranforms with a
stronger tying, and then estimate the shift tranforms with a
looser tying. In this work we present results both using this
procedure, and also a slightly different one, which is aimed
at better approximating the joint estimation, that is alter-
nate estimation of full and shift transforms. Performance
difference is very limited between this two variants.
As will be shown by the experiments, one can not expect
large benefits from this technique alone in a typical system.
On the other hand, it appears to be advantageous in the con-
text of cross-system adaptation or multiple supervisions.
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Table 1 summarizes results obtained on the development
set of the EPPS’06 English task (EPPS-DEV06en), by us-
ing the adaptations variants described above. All the exper-
iments exploit the same supervision, that was provided by
the first step of the baseline system after text-independent
CMLSN normalization. The features of the system corre-
spond to those reported in the description of the ITC-irst
evaluation system elsewhere in these proceedings, except
that no 4-gram LM is used in these experiments. The table
presents results relative to the use of two different AMs in
the adaptation step. The first row (“Baseline”) applies adap-
tation to the same AM used for generating the supervision.
This AM only exploits text-independent CMLSN normal-
ization, while the second row (“Normalized”) reports the
performance of the AM that includes HLDA and supervised
CMLSN.
The first column refers to the use of a standard setup with
three iterations of MLLR adaptation of means and vari-
ances using a 4-class regression tree. It can be seen that this
delivers an improvement of about 10% relative to the super-
vision, a fairly common result observed in many tasks. The
second column shows the performance obtained by three it-
erations of Shift-MLLR, using the full regression tree, but
imposing a threshold for occupancy of 100 frames. It turns
out that this procedure provides worse performance than
the previous one, confirming that it is not intrinsically su-
perior to the usual method. We observed this in similar
experiments as well, even though the difference was usu-
ally smaller. The following two columns show results ob-
tained by combining full transforms and shift transforms in
two different ways. For “Cascade”, three iterations of 4-
class full-transform MLLR are followed by three iterations
of Shift-MLLR, while for “Alternate” the two estimations
are interleaved for three times. Results show that any of
the combinations performs similarly, recovering the perfor-
mance of the standard method.
The second row exhibits different relative performance. In
this case the Shift-MLLR method provides a small im-
provement, which becomes more visible when the tech-
nique is used jointly with full transform MLLR. The differ-
ent trend can be explained by considering that in this case
the data already undergo a HLDA+CMLSN normalization,
providing most of the benefit with respect to the baseline.
The additional full-transform MLLR step increases perfor-
mance only marginally, being too similar to this processing.
In contrast, Shift-MLLR influences model parameters in a
more complementary way.
The last two columns presents contrastive results, where
only one estimation method is applied with six iterations,
since the latter is the total number of iterations performed
when methods are combined. They show that the increased
number of iterations does not affect the behavior of either
technique, and in the case of Shift-MLLR a slight degrada-
tion occurs, probably due to overtraining.
From this and similar experiments, we conclude that the
Shift-MLLR technique, while not being a substitute for the
standard full-transform MLLR, is able to add some adap-
tation capability in the framework of a system that already
exploits variations of the MLLR technique. In any case,
performance is never lost with respect to the best case when
Shift-MLLR and MLLR are used in combination.

4. System Combination Experiments
During the preparation for the 2006 TC-STAR Evaluation,
it was decided to study the effect of techniques for com-

IBM05 15.3
IRST-p1 19.2
LIMSI05 14.0
RWTH 18.3
UKA 17.3

(a)

IRST-p1+IRST-p2 14.4
IBM05+IRST-p2 12.4
LIMSI05+IRST-p2 12.5
RWTH+IRST-p2 13.1
UKA+IRST-p2 13.6

(b)
All + IRST-p2 11.6
IRST-p1,RWTH,UKA + IRST-p2 12.8
IBM05,LIMSI05 + IRST-p2 11.5

(c)

Table 2: Performance achieved with the first set of cross-
system adaptation and system combination experiments on
EPPS-DEV06en.

bining different system outputs, so we run several cross-
system adaptation experiments to systematically measure
the benefits of using cross-site supervisions in an adaptive
recognition system.
Tables 2(a), 2(b) report on the first set of such experiments,
performed on EPPS-DEV06en. Table2(a) shows the per-
formance of each TC-STAR partner’s intermediate system
as available on the project web site during the initial stages
of development. The first row of Table 2(b) shows the per-
formance of the reference ITC-irst system used for the ex-
periments, exploiting as supervision the output of IRST-p1,
an unadapted system. The remaining rows show the per-
formance obtained by using each of the alternative super-
visions. All experiments were based on three iterations
of Shift-MLLR, with an occupancy threshold of 50 for
the nodes of the regression class tree. In this kind of ex-
periments, Shift-MLLR always outperformed 4-class full-
transform MLLR. This aspect will be better exemplified in
the last set of experiments.
In Table 2(b), a significant advantage of cross-site systems
can be observed over the ITC-irst system, and also over
the best single-site system. As already noted in Section 2.,
this is not strictly related to WER. For example, compar-
ing the effect of supervisions generated by the RWTH and
UKA systems, one sees that, in spite of the former having a
higher WER, it appears to be more effective for the ITC-irst
system. A similar consideration applies to the comparison
between the effects of IBM and LIMSI supervisions.
The cross-system adaptation experiments in Table 2(b) con-
firm and quantify a phenomenon which is already well
known. They are useful for setting up a reference for what
was the real goal of the work, namely to develop a tech-
nique to effectively combine multiple systems. To this
end, we exploited a few grouping of the outputs to per-
form multiple-supervision adaptation with the procedure
described in Section 2.. Results are reported in Table 2(c).
The first row shows that, by using the supervisions of all

IBM p 11.7
IRST r 13.8
LIMSI p 10.9
RWTH r 14.2
UKA p 14.6

(a)

ROVER 10.2
ROVER+LIMSI p 9.7
ROVER+IRST-i 10.1
MulSup+IRST-i 9.9

(b)

Table 3: Results of system combination experiments on
EPPS-DEV05en.
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IBM v4 10.6 IRST v4 13.0
LIMSI v4 10.1 RWTH v4 12.9
UKA v4 12.7 ROVER 8.7

(a)

MLLR S-MLLR Cascade Alternate MLLR6 S-MLLR6
ROVER Sup. 12.8 10.6 10.4 10.4 12.7 10.4
Multiple Sup. 13.1 9.9 9.9 9.8 13.1 9.8

(b)

Table 4: Performance on EPPS-DEV06EN of different adaptation procedures in system combination experiments. The
reference system is the same used for producing the results in the second row of Table 1.

systems, the combination achieves a 17% improvement rel-
ative to the best single-site system, and a 19% improvement
relative to the reference system. The following rows report
on results obtained by dividing the systems in two classes,
those with a WER above 16% and those below that thresh-
old. It can be seen that, even using the output of the less ac-
curate systems, multiple supervision adaptation approaches
the performance obtained with the best supervisions, and
still outperforms any single-site system. However, the best
performance overall is achieved by using the two most ac-
curate systems.
The multiple supervisions technique presented in this pa-
per attributes most relevance to the system used in the final
step, therefore, to exploit the method at its best, this should
be among the most accurate. To verify the validity of the
method while approximating this condition, we performed
some experiments on the EPPS-DEV05en data, using last
year’s system outputs, and an improved version of our sys-
tem (IRST-i), with a WER of 11.2%, not far from the best
single-site system. In this case, we are also able to compare
similar experiments performed at different sites.
Table 3 summarizes the outcomes of this second set of
experiments. On the left are the performance of the sys-
tems used by different sites in the EPPS’05 evaluation,
on the right are results obtained by different combination
techniques. The first row of Table 3(b) shows the perfor-
mance of the ROVER combination of the single-site out-
puts, achieving a 6.4% relative WER reduction over the
best single-site system. The second and third rows report
on similar experiments performed at LIMSI and ITC-irst,
in which the ROVER output was used as supervision for an
adaptation step of the acoustic model.
While the performance of ROVER+IRST-i is not as good
as ROVER+LIMSI p, there is still a small gain when com-
pared with the ROVER result. The last row shows that an
improvement was obtained by using the multiple supervi-
sion method. Even if the absolute performance is still worse
than the ROVER+LIMSI p combination, due to a less ac-
curate reference system, this result represents a 9.2% rel-
ative WER reduction over the best single-site system, and
suggests that, for a given reference system, the multiple su-
pervision method has the potential of better exploiting the
information contained in multiple transcriptions.
The last set of experiments was run on EPPS-DEV06en af-
ter improved systems for the 2006 Evaluation became avail-
able. Table 4(a) shows the performance of each single-
site system, together with the performance of their ROVER
combination. The reference system for the combination ex-
periments is the same used for the experiments in the sec-
ond row of Table 1. It differs from IRST v4 in that it does
not include fourgram rescoring of the word-graphs. In this
case, we compare the different variants of the adaptation
technique in a system combination framework, both by us-
ing the supervision obtained by ROVER, and the multiple
supervision method. The first thing to notice is that in this
case the output with the multiple supervisions method can

still be better than any single-site system, even if by a nar-
row margin, but is definetely worse than ROVER combina-
tion. In fact, in this case the assumption that the reference
system is among the best is clearly violated, so we dicuss
relative performance of the adaptation methods.
Two main observations can be made observing Table 4: the
first is that, in this context, Shift-MLLR, either alone or
together with full-transform MLLR, exhibits a clear advan-
tage; the second is that the multiple supervision approach
is actually superior to the ROVER supervision only in com-
bination with Shift-MLLR. These can be explained by con-
sidering the difference in the characteristics of the tasks and
of the adaptation methods.
There is a trade-off between acoustic resolution and robust-
ness, and the relative influence of these two opposites is
different in a single-site setup and a system combination
setup. In a single-site system, the risk of overtraining is
higher, since the model that generated the supervision and
the one that is adapted according to its supervision are more
likely to be similar, if not the same. Hence, robustness has
to be preserved by means of a stronger tying. When using a
cross-site supervision, or multiple supervisions, overtrain-
ing is much less likely to occur, therefore a looser tying is
beneficial, assuming that the ratio between data sample and
parameters is adequate for a reliable statistic estimation.

5. Conclusion
In this paper we presented a series of experiments concern-
ing cross-adaptation between different ASR systems, and
discussed a method for combining the output of multiple
systems. It turns out that the latter can provide some ad-
vantage over the well known ROVER combination, if some
conditions are met. Results also show that a simple variant
of the MLLR technique is effective in this context.
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