
USING NEURAL NETWORK LANGUAGE MODELS FOR LVCSR

Holger Schwenk and Jean-Luc Gauvain

LIMSI-CNRS
BP 133, bat 508, 91436 Orsay cedex, FRANCE

ABSTRACT

In this paper we describe how to use a neural network
language model for the BN and CTS task in the RT04 eval-
uation. The new approach performs the estimation of the
language model probabilities in a continuous space, allow-
ing by this means smooth interpolations. Details are given
on training data selection, fast training and decoding algo-
rithms and parameter estimation. The neural network lan-
guage model achieved word error reductions of 0.5% for the
CTS task and of 0.3% for the BN task with an additional de-
coding cost of 0.05xRT.

1. INTRODUCTION

There has been a lot of progress in acoustic modeling for
large vocabulary speech recognition (LVCSR) during the
last years, in particular various techniques for discriminate
training and linear transformations for adaptation. These
techniques usually achieve word error reductions of several
points when deployed in a state-of-the-art large vocabulary
speech recognizer. It seems more complicated to introduce
alternative approaches to the widely adopted n-gram back-
off language models (LM). Apparently, these models are
quite difficult to beat in a LVCSR when there are several
million words of language model training data available.
The only new approach we are aware of that achieves a word
error reduction, is the SuperARV language model [1] used
by SRI in their BN and CTS systems [2].

In this paper we describe the application of a new ap-
proach that uses a neural network to estimate the LM pos-
terior probabilities [3, 4]. The basic idea is to project the
word indices onto a continuous space and to use a proba-
bility estimator operating on this space. Since the resulting
probability functions are smooth functions of the word rep-
resentation, better generalization to unknownn-grams can
be expected. A neural network can be used to simultane-
ously learn the projection of the words onto the continuous
space and then-gram probability estimation. This is still a
n-gram approach, but the LM posterior probabilities are ”in-
terpolated” for any possible context of lengthn-1 instead of
backing-off to shorter contexts.

The first evaluation of such an approach in a conversa-
tional speech recognizer demonstrated that it can be used
to reduce the word error [5]. In the following sections we
show how the neural network language model achieves sig-
nificant word error reductions in state-of-the-art CTS and
BN speech recognizers at a very additional decoding cost.

2. ARCHITECTURE

The architecture of the neural networkn-gram LM is shown
in Figure 1. A standard fully-connected multi-layer percep-
tron is used. The inputs to the neural network are the in-
dices of then−1 previous words in the vocabularyhj =
wj−n+1, ..., wj−2, wj−1 and the outputs are the posterior
probabilities ofall words of the vocabulary:

P (wj = i|hj) ∀i ∈ [1, N] (1)

whereN is the size of the vocabulary. This can be con-
trasted to standard language modeling where eachn-gram
probability is calculated independently. The input uses the
so-called 1-of-n coding, i.e., thei-th word of the vocabulary
is coded by setting thei-th element of the vector to 1 and all
the other elements to 0. This coding substantially simpli-
fies the calculation of the projection layer since only thei-th
line needs to be copied of theN×P dimensional projection
matrix, whereN is the size of the vocabulary andP the size
of the projection.

Let us denoteck these projections,dj the hidden layer
activities, oi the outputs,pi their softmax normalization,
andmjk, bj , vij andki the hidden and output layer weights
and the corresponding biases. Using matrix/vector notation
the neural network performs the following operations:

d = tanh (M ∗ c + b) (2)

o = tanh (V ∗ d + k) (3)

p = exp(o) /

N∑

k=1

eok (4)

where lower case bold letters denote vectors and upper case
bold letters denote matrices. The tanh and exp function as
well as the division are performed element wise. The value

hidden
layer

projection
layer

output
layerinput

shared
projections

continuous

probability estimation

representation: representation:
indices in wordlist

LM probabilities

Neural Network

discrete
for all words

N

wj−1 P

H

N

P (wj=i|hj)

P (wj=1|hj)

P (wj=N|hj)

wj−n+1

wj−n+2

ck

oi

P dimensional vectors

Vdj

M pi =

pN =

p1 =

Fig. 1. Architecture of the neural network language model.
hj denotes the contextwj−n+1, ..., wj−1. P is the size of
one projection andH andN is the size of the hidden and
output layer respectively. When shortlists are used the size
of the output layer is much smaller then the size of the vo-
cabulary.

of the output neuronpi corresponds directly to the probabil-
ity P (wj = i|hj). Training is performed with the standard
back-propagation algorithm using the cross-entropy as er-
ror function, and a weight decay regularization term. The
targets are set to 1.0 for the next word in the training sen-
tence and to 0.0 for all the other ones. It can be shown that
the outputs of a neural network trained in this manner con-
verge to the posterior probabilities. Therefore, the neural
network directly minimizes the perplexity on the training
data. Note also that the gradient is back-propagated through
the projection-layer, which means that the neural network
learns the projection of the words onto the continuous space
that is best for the probability estimation task.

2.1. Fast Recognition

Language models play an important role during decoding
of continuous speech since the information provided about
the most probable set of words given the current context
is used to limit the search space. Using the neural 4-gram
LM directly during decoding imposes an important burden
on search space organization since a context of three words
must be kept. This lead to long decoding times in our first
experiments when the neural LM was used directly dur-
ing decoding [5]. In order to make the model tractable for
LVCSR the following techniques have been applied:

1. Lattice rescoring: decoding is done with a standard
back-off LM and a lattice is generated. The neural
network LM is then used to rescore the lattice.

2. Shortlists: the neural network is only used to predict
the LM probabilities of a subset of the whole vocab-
ulary.

3. Regrouping: all LM probability requests in one lat-
tice are collected and sorted. By these means all LM
probability requests with the same contextht lead to
only one forward pass through the neural network.

4. Block mode: several examples are propagated at once
through the neural network, allowing the use of faster
matrix/matrix operations.

5. CPU optimization: machine specific libraries BLAS
are used for fast matrix and vector operations.

It has been demonstrated in Section 2 that most calcu-
lations are done due to the large size of the output layer.
Remember that all outputs need to be calculated in order
to perform the softmax normalization even though only one
LM probability is needed. Experiments using lattice rescor-
ing with unnormalized LM scores led to much higher word
error rates. One may argue that it is not very reasonable to
spend a lot of time to get the LM probabilities of words that
do not appear very often. Therefore, we chose to limit the
output of the neural network to thes most frequent words,
s ¿ |V |, referred to as ashortlist in the following discus-
sion. All words of the word list are still considered at the
input of the neural network. The LM probabilities of words
in the shortlist (̂PN) are calculated by the neural network
and the LM probabilities of the remaining words (P̂B) are
obtained from a standard4-gram back-off LM:

P̂ (wt|ht) =
{

P̂N (wt|ht) · PS(ht) if wt ∈ shortlist
P̂B(wt|ht) else

(5)

PS(ht) =
∑

w∈shortlist(ht)

P̂B(w|ht) (6)

It can be considered that the neural network redistributes
the probability mass of all the words in the shortlist.1 This
probability mass is precalculated and stored in the data struc-
tures of the standard4-gram LM. A back-off technique is
used if the probability mass for a requested input context is
not directly available. Table 1 gives the coverage, i.e. the
percentage of LM probabilities that are effectively calcu-
lated by the neural network when evaluating the perplexity
on a development set of 56k words or when rescoring lat-
tices.

During lattice rescoring LM probabilities with the same
contextht are often requested several times on potentially
different nodes in the lattice Collecting and regrouping all

1Note that the sum of the probabilities of the words in the shortlist for
a given context is normalized

∑
w∈shortlist

P̂N (w|ht) = 1.

shortlist size 1024 2000 4096 8192
dev. set 89.3% 93.6% 96.8% 98.5%

lattice 88.5% 89.9% 90.4% 91.0%

Table 1. Coverage for different shortlist sizes, i.e. percent-
age of 4-grams that are actually calculated by the neural
LM. The vocabulary size id about 51k.

these calls prevents multiple forward passes since all LM
predictions for the same context are immediately available.
Further improvements can be obtained by propagating sev-
eral examples at once though the network, also know as
bunch mode [6]. In comparison to equation 4, this results
in using matrix/matrix instead of matrix/vector operations:

D = tanh (M ∗C + B) (7)

O = V ∗D + K (8)

whereB andK are obtained by duplicating the biasb and
k respectively for each line of the matrix. The tanh-function
is performed element wise.

These matrix/matrix operations can be aggressively op-
timized on current CPU architectures, e.g. using SSE2 in-
structions for Intel processors [7, 8]. Although the num-
ber of floating point operations to be performed is strictly
identical to single example mode, an up to five times faster
execution can be observed in function of the sizes of the
matrices.

The NIST Eval01 test set consists of 6h of speech com-
prised of 5895 conversations sides. The lattices generated
by the speech recognizer for this test set contain on aver-
age 511 nodes and 1481 arcs per conversation side. In to-
tal 3.8 million 4-gram LM probabilities were requested out
of which 3.4 million (89.9%) have been processed by the
neural network, i.e. the to be predicted word is among the
2000 most frequent words. After collecting and regrouping
all LM calls in each lattice, only 1 million forward passes
though the neural network have been performed, giving a
cache hit rate of about 70%. Using a bunch size of 128 ex-
amples, the total processing time took less than 9 minutes
on a Intel Xeon 2.8GHz processor, e.g. in 0.03 times real
time. This corresponds to about 1.7 billion floating point
operations per second (1.7 GFlops). Lattice rescoring with-
out bunch mode and regrouping of all calls in one lattice is
about ten times slower.

2.2. Fast Training

Language models are usually trained on text corpora of sev-
eral million words. With a vocabulary size of 51k words,
standard back-propagation training would take several weeks.
Parallel implementations [4] and resampling techniques [9]
that result in important speedups have been proposed. Par-
allel stochastic back-propagation of neural networks needs

connections between the processors with very low latency,
which are very costly. Optimized floating point operations
are much more efficient if they are applied to data that is
stored in continuous locations in memory, making a better
use of cache and data prefetch capabilities of processors.
This is not the case for resampling techniques. Therefore, a
fixed size output layer was used and the words in the short-
list were rearranged in order to occupy continuous locations
in memory.

In our initial implementation we used standard stochas-
tic back-propagation and double precision for the floating
point operations in order to ensure good convergence. De-
spite careful coding and optimized BLAS libraries [7, 8] for
the matrix/vector operations, one epoch through a training
corpus of 12.4M examples took about 47 hours on a Pen-
tium Xeon 2.8 GHz processor. This time was reduced by
more than a factor of 30 using the following techniques:

• Floating point precision (1.5 times faster). Only a
slight decrease in performance was observed due to
the lower precision.

• Suppression of intermediate calculations when updat-
ing the weights (1.3 times faster).

• Bunch mode: forward and back-propagation of sev-
eral examples at once (up to 10 times faster).

• Multi-processing: use of SMP-capable BLAS libraries
for off-the-shelf bi-processor machines (1.5 times faster).

The most of the improvement was obtained by using
bunch mode in the forward and backward pass. After calcu-
lating the derivatives of the error function∆K at the output
layer, the following equations were used (similar to [6]):

k = k− λ∆K ∗ i (9)

∆B = VT ∗∆K (10)

V = −λ∆K ∗DT + αV (11)

∆B = ∆B. ∗ (1−D. ∗D) (12)

b = b− λ∆B ∗ i (13)

∆C = MT ∗∆B (14)

M = −λ∆B ∗CT + αM (15)

wherei = (1, 1, ...1)T , with dimension of the bunch size.
Note that the back-propagation and weight update step, in-
cluding weight decay, is done in one operation using the
GEMM function of the BLAS library (eqn. 11 and 15).
For this, the weight decay factorε is incorporated intoα =
1−λε. The update step of the projection matrix is not shown
for clarity.

Table 2 summarizes the effect of the different techniques
to speed up training. Extensive experiments were first done
with a training corpus of 1.1M words and then applied to a

size of double float bunch mode SMP
training data prec. prec. 2 4 8 16 32 128 128

1.1M words 2h 1h16 37m 31m 24m 14m 11m 8m18 5m50
12.4M words 47h 30h 10h12 8h18 6h51 4h01 2h51 2h09 1h27

Table 2. Training times reflecting the different improvements (on a Intel Pentium CPU at 2.8 GHz).

larger CTS corpus of 12.4M words. Bilmes et al. reported
that the number of epochs needed to achieve the same MSE
increases with the bunch size [6]. In our experiments the
convergence behavior also changed with the bunch size, but
after adapting the learning parameters of the neural network
only small losses in perplexity were observed, and there was
no impact on the word error when the neural LM was used
in lattice rescoring.

3. APPLICATION TO CTS

The neural network LM has already been used in LIMSI’s
CTS system for the RT02 and RT03 evaluations, achieving
word error reduction of about 0.4%. Since then, the word er-
ror rates of the overall system have considerably decreased,
mainly due to the effective use of large amounts of data for
acoustic and language modeling. In the following sections
comparative results are provided, showing the impact of the
neural network LM in function of the available training data
and the baseline word error of the overall system.

3.1. LM training data

The following corpora were used for language modeling in
the RT04 system:

• CTS transcripts with breath noise (6.1M words): 2.7M
words of the swbldc transcriptions, 1.1M words from
CTRAN transcriptions of Switchboard-II data, 230k
words of cellular training data, 215k word of the Call-
Home corpus transcriptions, 1.7M words of Fisher
data transcribed by LDC, transcripts of the 1997 to
2001 eval sets.

• CTS transcripts without breath noise (21.2M words):
2.9M words of swb1isip transcriptions, 18.3M words
of Fisher data transcribed by WordWave and distri-
buted by BBN.

• BN transcriptions from LDC (years 92-95) and from
PSMedia (years 96 and 97, and Jan-Nov 1998):
260.3M words.

• CNN transcripts from the CNN archive (01/2000-
31/12/2003): 115.9M words.

• up to 525M words of web data from the University of
Washington.

The last three corpora (more than 500M words) are re-
ferred to as BN corpus, in contrast to the 27.3M words of the
CTS corpus (first two items of above list). The LM vocabu-
lary contains 51077 words. The baseline LM is constructed
as follows: Separate back-offn-gram LMs are estimated for
all the above corpora using the modified version of Kneser-
Ney smoothing as implemented in the SRI LM toolkit [10].
A single back-off LM was built by merging these models,
estimating the interpolation coefficients with an EM proce-
dure. The neural network LM was trained only on the CTS
corpora. Two experiments have been conducted:

1. The neural network LM is interpolated with a back-
off LM that was also trained only on the CTS corpora
and compared to this LM.

2. The neural network LM is interpolated with the full
back-off LM (CTS and BN data) and compared to this
full LM.

The first experiment allows us to assess the real bene-
fit of the neural LM since the two smoothing approaches
(back-off and neural network) are compared on the same
data. In the second experiment all the available data is used
to obtain the overall best results.

3.2. Development results

In this section the neural network LM is compared to the
back-off LM for different amounts of LM training data. Start-
ing with 7.2M words (SWB data only), the first release of
Fisher data was added (12.3M words in total), until all Fisher
data was available (27.2M words in total). The perplexities
of the neural network and the back-off LM are given in Ta-
ble 3.

CTS corpus [words]: 7.2M 12.3M 27.2M
In-domain data only:

back-off LM 62.4 55.9 50.1
neural LM 57.0 50.6 45.5

Interpolated with all data:
back-off LM 53.0 51.1 47.5

neural LM 50.8 48.0 44.2

Table 3. Eval03 test set perplexities for the back-off and
neural LM as a function of the size of the CTS training data.

A perplexity reduction of about 9% relative is obtained
independently of the size of the LM training data. This gain
decreases to approximatively 6% after interpolation with the
back-off LM trained on the additional BN corpus of out-of
domain data. It can been seen that the perplexity of the neu-
ral network LM trained only on the CTS data is better than
that of the back-off reference LM trained on all data (45.5
with respect to 47.5). Despite these rather small gains in
perplexity, consistent word error reductions were observed
(see Figure 2). The first system is that described in [11].
The second system has a much lower word error rate than
the first one due to several improvements of the acoustics
models, and the availability of more acoustic training data.
The third system differs from the second one again by the
amount of training data used for the acoustic and the lan-
guage model.

18

20

22

24

26

7.1 12.3 27.1

w
o
r
d

e
r
r
o
r

[
%
]

in-domain LM training corpus size [M words]

25.27%

23.04%

19.94%

24.09%

22.32%

19.30%

24.51%

22.19%

19.10%

23.70%

21.77%

18.85%

System 1

System 2

System 3

backoff LM alone
 neural LM alone
backoff LM + BN
 neural LM + BN

Fig. 2. Word error rates on the Eval03 test set for the back-
off LM and the neural network LM, trained only on CTS
data (left bars for each system) and interpolated with the
BN LM (right bars for each system).

Although the size of the LM training data has almost
quadrupled from 7.2M to 27.2M words, a consistent abso-
lute word error reduction of 0.55% can be observed [12].
In all these experiments, it seems that the word error reduc-
tions brought by the neural network LM are independent of
the other improvements, in particular those obtained by bet-
ter acoustic modeling and by adding more language model
training data. When only this CTS data is used (left bars for
each system in Figure 2) the neural network LM achieves
an absolute word error reduction of about 0.8%. Note also
that the neural network LM trained on at least 12.3M words
is better than the back-off LM that uses in addition 500M
words of the BN corpus.

3.3. RT04 results

The BBN/LIMSI 2004 English STT evaluation system uses
a tightly integrated combination of 5 BBN and 3 LIMSI
speech recognition systems, all of LIMSI’s systems use the

neural network LM (more details are provided in[13]). Ta-
ble 4 summarizes the word error rates of three LIMSI com-
ponents with and without the neural network LM.

dev04 eval04
system back-off NN back-off NN

L1 15.99% 15.52% 18.76% 18.32%
L2 14.71% 14.45% 17.18% 16.86%
L3 14.94% 14.64% 17.33% 17.06%

Table 4. Dev04 word error rates for the LIMSI components
of the 2004 BBN/LIMSI CTS evaluation system

It can be seen that the neural network LM gives a 0.5%
absolute improvement for the first LIMSI system. There is
an additional gain of about 0.3% for the L2 and L3 systems,
although they are based on the hypothesis of the L1 system,
including system combination with two BBN systems.

In fact, two different versions of the neural network LM
were used. For the L1 system, one large neural network
with 1560 hidden units was trained on all the 27.2M words
of CTS data.2 The interpolation coefficients of this neu-
ral network LM with the back-off LM trained on all data
was 0.5 (optimized by an EM procedure on dev04). Lattice
rescoring with the neural network LM for this system takes
about 0.05xRT. For the L2 and L3 system four smaller net-
works, of dimension 500 and 600 hidden units respectively,
were trained on the same data, but with different random
initialization of the weights and different random orders of
the training examples. It was found that this gives better
generalization behavior than one large neural network with
the same amount of parameters. These four neural network
LMs are interpolated with the back-off LM (coefficients:
0.14, 0.14, 0.15, 0.15 and 0.62). Lattice rescoring for these
two systems takes about 0.06xRT.

4. APPLICATION TO BN

In the beginning the neural network LM has been developed
specially for the CTS task where the need is more important
due to the limited amount of in-domain data for this task.
The situation is not the same for the BN task, for which
commercially produced transcripts, CNN transcripts from
the WEB or even newspaper text seems to be appropriate
for language model training, resulting in large amounts of
available data. This make the use of the neural network LM
for the BN task questionable. First of all it is impossible to
train it on more than a billion words, and second, we are not
faced with a data sparseness problem any more, which is the
major motivation for using the neural network LM. It could
be believed that training a back-off LM on so much data,
should give a very good model, difficult to improve upon.

2the word codes are of dimension 50 in all the experiments.

system: B1 L1 R1 B2 R2 L2 R3
without NN LM 10.98 10.43 9.94 10.12 9.68 10.15 9.61

with NN LM 10.11 9.78 9.95 9.54 9.87 9.26

Table 5. Dev04 word error rates of the different components of the RT04 BBN/LIMSI BN system,
System combinations: R1=B1+L1, R2=B1+L1+B2, R3=L1+B2+L2

In the following sections results are reported showing that
the neural network LM is nevertheless quite useful for the
BN task.

4.1. LM training data

The reference interpolated 4-gram back-off LM was built
from 9 component models trained on subsets of the avail-
able text materials including transcriptions of the acous-
tic BN data (1.8M words); transcriptions of the CTS data
(27.4M words); TDT2, TDT3 and TDT4 closed captions
(14.3M words); commercially produced BN transcripts from
LDC and PSMedia (260M words); CNN web archived tran-
scripts (112M words from Jan’2000-Nov’2003, excluding
15/01/01-28/02/01); and newspaper texts (1463M words).
All data predates November 15, 2003 with the period
15/01/2001-28/02/2001 being excluded. The word list con-
tains 65523 words and has an OOV rate of 0.48% on the
dev04 set. The word list also contains compound words
for about 300 frequent word sequences and about 1000 fre-
quent acronyms. The interpolation coefficients were esti-
mated using an EM procedure to optimize the perplexity on
the Dev04 data set.

Despite the fast training algorithms it would take a long
time to train the neural network LM on several hundred
million words, so a small 27M word subset was selected
that was expected to represent the evaluation period of the
progress set: BN transcriptions, TDT2, TDT3 and TDT4
closed captions and 4 months of CNN transcripts from 2001.
Although this is less than 9% of the data, the corresponding
component LMs account for more than 20% in the inter-
polation for the final LM. To further speed-up the training
process, four small neural networks were trained on all the
data (using the same randomization procedure than for the
CTS components). The hidden layers were again of size
500 and 600 respectively.

data set back-off LM neural LM
subset (27M words) 148.44 130.70

full corpus (1.9G words) 109.93 105.44

Table 6. Perplexities on the dev04 set

As can be seen from table 6, the neural network LM
gives a gain of 12% in perplexity with respect to the back-
off 4-gram LM if only the small 27M words corpus is used.

The interpolation coefficient of the neural LM is 0.6. Using
all data for the back-off LM, the gain reduces to 4% relative,
with an interpolation coefficient of 0.4.

4.2. RT04 results

The BBN/LIMSI 2004 English BN evaluation system uses
a tightly integrated combination of the BBN and LIMSI
speech recognition component systems. First BBN runs a
a two pass decoding (system B1, 2.6xRT), followed by a
full LIMSI decode that adapts on this result (system L1,
2.7xRT). BBN runs then another 2 pass decode (system B2,
2.1xRT) by adapting on the rover of L1 and B2. Finally
LIMSI adapts to the rover of B1, L1 and B2 and runs an-
other full decode (system L2, 1.8xRT). The final result is
the combination of L1, B2, and L2. More details of this
integrated system are provided in [14].

Both LIMSI systems use the neural network LM to
rescore the lattices of the last decoding run, followed by
consensus decoding and solution extraction. There is a word
error reduction of 0.3% for the L1 system (10.43→ 10.11%)
and of 0.2% for the L2 system (10.07→ 9.87%). After the
submission of the official BBN/LIMSI RT04 BN evaluation
system, a contrastive experiment was carried out without
using the neural network LM in LIMSI’s components. It
is surprising to see that this affects in fact all the following
runs, i.e. ROVER combinations and cross-site adaptations,
resulting in an increase in the word error rate of the overall
integrated system by 0.35%. In summary, the neural net-
work LM achieves significant reductions in the word error
rate although it was trained on less than 10% of the available
language model training data.

5. CONCLUSION

In this paper we presented a neural network language model
for the BN and CTS transcription task of the 2004 Rich
Transcription evaluation. The main idea is to perform the
estimation of the LM probabilities in a continuous space,
allowing by these means “smooth interpolations.” Fast algo-
rithms for training and recognition have been described: one
training epoch through 27M examples takes about 10 hours
and lattice rescoring is usually done in less than 0.05xRT.

The neural network LM was initially developed for the
CTS task where the need is more important due to the lim-
ited amount of in-domain CTS LM training data. A consis-

tent word error reduction of about 0.5% was observed al-
tough the CTS LM training data was increased from 7M to
more than 27M words. This gain also seems to be indepen-
dent from other improvements of the system, in particular
better acoustic modeling using all the Fisher data.

The BN task is characterized by a huge amount of LM
training data since commercial transcripts and even news-
paper text is believed to represent well the speaking style.
Although the neural network was only trained on less than
10% of the data, a word error reduction of about 0.3% was
observed in the integrated BBN/LIMSI system that uses mul-
tiples cross-site adaptations and system combinations.

Future work will concentrate on better training criteria
that are closer related to word error than perplexity, and on
unsupervised language model adaptation techniques.

6. REFERENCES

[1] W. Wang and M. P. Harper, “The SuperARV language
model: Investigating the effectiveness of tightly inte-
grating multiple knowledge sources,” inProceedings
of the Empirical Methods in Natural Language Pro-
cessing Conference, 2002.

[2] W. Wang, A. Stolcke, and M. P. Harper, “The use
of a linguistically motivated language model in con-
versational speech recognition,” inInternational Con-
ference on Acoustics, Speech, and Signal Processing,
2004.

[3] Y. Bengio and R. Ducharme, “A neural probabilistic
language model,” inAdvances in Neural Information
Processing Systems, vol. 13. Morgan Kaufmann,
2001.

[4] Y. Bengio, R. Ducharme, P. Vincent, and C. Jauvin,
“A neural probabilistic language model,”Journal of
Machine Learning Research, vol. 3, no. 2, pp. 1137–
1155, 2003.

[5] H. Schwenk and J.-L. Gauvain, “Connectionist lan-
guage modeling for large vocabulary continuous
speech recognition,” inInternational Conference on
Acoustics, Speech, and Signal Processing, 2002, pp.
I: 765–768.

[6] J. Bilmes, K. Asanovic, C.-W. Chin, and J. Dem-
mel, “Using phipac to speed error back-propagation
learning,” in International Conference on Acoustics,
Speech, and Signal Processing, 1997, pp. V:4153–
4156.

[7] Intel’s MKL, “Intel math kernel library,
http://www.intel.com/software/products/mkl/.”

[8] ATLAS, “Automatically tuned linear algebra software,
http://www.netlib.org/atlas.”

[9] Y. Bengio and J.-S. Śeńecal, “Quick training of prob-
abilistic neural nets by importance sampling,” inAIS-
TATS Conference, 2003.

[10] A. Stolcke, “SRILM - an extensible language mod-
eling toolkit,” in International Conference on Speech
and Language Processing, 2002, pp. II: 901–904.

[11] J.-L. Gauvain, L. Lamel, H. Schwenk, G. Adda,
L. Chen, and F. Lef̀evre, “Conversational telephone
speech recognition,” inInternational Conference on
Acoustics, Speech, and Signal Processing, 2003, pp.
I:212–215.

[12] H. Schwenk and J.-L. Gauvain, “Using a continu-
ous space language model for conversational speech
recognition,” in International Conference on Speech
and Language Processing, 2004.

[13] R. Prasad, S. Matsoukas, C.-L. Kao, J. Ma, D.-X. Xu,
T. Colthurst, G. Thattai, O. Kimball, R. Schwartz, J.-
L. Gauvain, L. Lamel, H. Schwenk, G. Adda, and
F. Lefevre, “The 2004 20xRT BBN/LIMSI english
conversational telephone speech system,” in2004 Rich
Transcriptions Workshop, Pallisades, NY, 2004.

[14] L. Nguyen, S. Abdou, M. Afify, J. Makhoul, S. Mat-
soukas, R. Schwartz, B. Xiang, L. Lamel, J.-L. Gau-
vain, G. Adda, H. Schwenk, and F. Lefevre, “The 2004
BBN/LIMSI 10xRT english broadcast news transcrip-
tion system,” in2004 Rich Transcriptions Workshop,
Pallisades, NY, 2004.

