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ABSTRACT
This paper describes the speech recognizers evaluated in

the TC-STAR Second Evaluation Campaign held in January-
February 2006. Systems were developed to transcribe parlia-
mentary speeches in English and Spanish, as well as Broadcast
news in Mandarin Chinese. The speech recognizers are state-
of-the-art systems using multiple decoding passes with models
(lexicon, acoustic models, language models) trained for the dif-
ferent transcription tasks. Compared to the LIMSI TC-STAR
2005 European Parliament Plenary Sessions (EPPS) systems,
relative word error rate reductions of about 30% have been
achieved on the 2006 development data. The word error rates
with the LIMSI systems on the 2006 EPPS evaluation data are
8.2% for English and 7.8% for Spanish. The character error rate
for Mandarin for a joint system submission with the University
of Karlsruhe was 9.8%. Experiments with cross-site adaptation
and system combination are also described.

1. INTRODUCTION
The TC-STAR project, financed by the European

Commission under the Sixth Framework Program, is
envisaged as a long-term effort to advance research in
all core technologies for Speech-to-Speech Translation
(SST). SST technology is a combination of Automatic
Speech Recognition (ASR), Spoken Language Transla-
tion (SLT) and Text to Speech (speech synthesis). The
project objectives are to significantly reduce the gap be-
tween human and machine translation performance.

The second evaluation of speech recognition technolo-
gies was carried out in Jan-Feb 2006. As in the first year
evaluation held in March 2005, speech recognition sys-
tems were tested for 3 languages (English, Spanish, Man-
darin) and multiple tasks (European Parliament, Spanish
Parliament, broadcast news). In this second evaluation
there were several new evaluation conditions. First, au-
tomatic segmentations of the audio data were used (last
year the machine translation systems imposed the use of
manual segmentations). Second, although two sources of
Spanish data were included in the test set, a requirement
was that the same system be used to process the EPPS
data and the data from the Spanish Parliament (Cortes).
Thirdly, the systems were required by the translation sys-

∗This work was partially financed by the European Commission un-
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tems to produce a case sensitive, punctuated output.
This paper describes the improvements made to the

LIMSI system in preparation for the 2006 TC-STAR
evaluation, and reports on experiments carried out with
system combination.

2. TASK AND DATA DESCRIPTION
TheTC-STARproject is addressing speech-to-speech

translation in 3 languages and 3 tasks. For the public
European Parliament Plenary Sessions (EPPS) tasks the
training cut-off date was set at May 31st, 2005, mean-
ing that no audio or text data after that day could be used
for training. The task-specific text data are comprised of
the minutes of the European Parliament also known as
the Final Text Editions. The textual training data date
from April 1996 through May 2005. Table 1 summarizes
the available training and test data for the 2006 evalua-
tion. About 90 hours and 100 hours of audio recordings
are available respectively for English EPPS and Span-
ish EPPS and Parliament training data, dating from 2004
and 2005. Between 3 and 4 hours of data were reserved
for use as a development set (see Table 1). The English
development data are from June 2005 and the English
test data from September 2005; the Spanish EPPS de-
velopment data are from June-July 2005 and the Spanish
Cortes development data are from December 2004, with
the test data from September-November 2005. The Man-
darin data are from the LDC Hub4 Mandarin data (27
hours with manual transcripts) as well as portions of data
from the TDT2, TDT3, and TDT4 corpora for which only
closed-captions were available.

The speech recognition evaluation conditions required
automatic speech/nonspeech detection and segmentation
into sentence-like units. The primary error metrics were
the case insensitive word error rate (WER) for English
and Spanish and the character error rate (CER). Systems
were also required to output case-sensitive texts with
punctuation marks, which were also scored.

3. SPEECH RECOGNIZER OVERVIEW
The speech recognizer for the Spanish EPPS data

uses the same basic modeling and decoding strategy
as in the LIMSI English broadcast news system [1].
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Training/ Audio data Text data
Task #Sessions Size Epoch (words)

English 63 91h Apr04 - 34M
EPPS Jan05 690k
Spanish 63 61h Apr04 - 36M
EPPS Jan05 471k
Spanish 24 38h Sep04 - 47M
Cortes Oct04 268k
Mandarin 350 27h Jan97 - 600M chars
BN shows + 170h Dec00 460k chars

Development and Test Data
Task Data type Size Epoch

English Dev 3.2h Jun05
EPPS Eval 3.2h Sep05
Spanish Dev 2.4h Jun-Jul05
EPPS Eval 3.3h Sep-Nov05
Spanish Dev 3.9h Dec04
Cortes Eval 4.0h Nov05
Mandarin Dev 3.2h, 6 shows 01-11 Dec98
BN Eval 4.0h, 4 shows 23-25 Dec98

Table 1: Summary of available audio and textual training data (left) and 2006 development and evaluation data (right).

Each phone model is a tied-state left-to-right CD-
HMM with Gaussian mixtures. The triphone-based
context-dependent phone models are word-independent
but position-dependent. The tied states are obtained by
means of a decision tree. The acoustic and language
models are language and task specific. Decoding is car-
ried out in four steps (2 more passes than the 2005 sys-
tem), with unsupervised acoustic model adaptation be-
tween each step.

Two variants of the speech segmentation and clustering
algorithm based on an audio stream mixture model [1]
were developed. Both make use of Gaussian mixture
models (GMMs) trained on 1-2 hours of English Hub4
data for speech, speech over music, noisy speech, pure-
music and other background conditions (advertisements).
First, the non-speech segments are detected and rejected
using the five GMMs representing speech. For the base-
line partitioner an iterative maximum likelihood segmen-
tation/clustering procedure is then applied to the speech
segments. Each segment cluster is assumed to represent
one speaker in a particular acoustic environment and is
modeled by a GMM. The objective function is the GMM
log-likelihood penalized by the number of segments and
the number of clusters, appropriately weighted. Four
sets of speech GMMs are then used to identify tele-
phone segments and the speaker gender. Segments longer
than 30s are chopped into smaller pieces by locating the
most probable pause within 15s to 30s from the previous
cut. For the second partitioner, the iterative GMM clus-
tering is replaced by BIC clustering, and an additional
GMM-based speaker identification clustering stage has
been added. This multistage system reduces speaker er-
ror by up to 50% relative to BIC alone on French and
English broadcast news data [2]. The architecture of the
baseline and multi-stage speaker diarization systems are
shown in Figure 1. The result of the procedure is a se-
quence of non-overlapping segments with cluster, gender
and telephone/wideband labels.

4. ACOUSTIC MODELING
The LIMSI speech recognizer [1] uses 39 cepstral pa-

rameters derived from a Mel frequency spectrum esti-
mated on the 0-8kHz band (or 0-3.5kHz for telephone
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Figure 1: Architecture of the baseline and multi-stage speaker
diarization system.

data) every 10ms. For each 30ms frame the Mel scale
power spectrum is computed, and the cubic root taken
followed by an inverse Fourier transform. Then LPC-
based cepstrum coefficients are computed. The cepstral
coefficients are normalized on a segment-cluster basis us-
ing cepstral mean removal and variance normalization.
Thus each cepstral coefficient for each cluster has a zero
mean and unity variance. The 39-component feature vec-
tor consists of 12 cepstrum coefficients and the log en-
ergy, along with the first and second order derivatives.

The same general method is used to construct acoustic
models for each task/language using the available train-
ing data. For English and Spanish, standard supervised
training is performed, whereas for Mandarin both super-
vised and lightly supervised training is used [3]. Standard
HMM training requires an alignment between the audio
signal and the phone models, which usually relies on an
orthographic transcription of the speech data and a good
phonemic lexicon. After normalizing the transcripts and
completing the pronunciation dictionary, it is common to
Viterbi align the orthographic transcriptions with the sig-
nal using existing models (via the lexicon) to produce a
time-aligned phone transcription. This alignment gener-
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Language English Spanish Mandarin

Data type EPPS EPPS/Cortes BN
Audio data 71h 73h 27h+170h
Transcript manual manual man+light
P1 5k / 5k 2.0k / 2.0k (UKA )
P2 28k / 11.5k 5.6k / 8.1k 24k / 11.5k
P3 18k / 11.7k 6.3k / 8.7k 24k / 11.5k
P4 18k / 11.5k 6.3k / 8.7k 24k / 11.5k

Table 2: Acoustic models used in the different decoding passes.
The #contexts and # tied states are given for each model set.

ally also uses manual segmentations into speaker turns or
sentence-like units.

The acoustic model training procedure has also been
completely revised, using an automatic segmentation and
speaker labeling, instead of using the manual annotations.
This revised method aligns the words in the reference
transcripts with an automatic segmentation created by the
audio partitioner. This results in a significantly simplified
training procedure which is also more coherent with the
subsequent decoding steps. This homogeneous (simpli-
fied) method has been applied to all tasks and languages,
and can optionally allow non-speech events to be inserted
during the alignment step.

Table 2 summarizes the characteristics of the various
acoustic model sets used in the four decoding stages for
the evaluation systems. All acoustic models MLLT-SAT
trained, gender-dependent, tied-state position-dependent
triphone models with backoff to right/left context and
context-independent models. Separate cross-word and
word-internal statistics are used to select the contexts to
be modeled, and language-specific decision trees are used
to tie the model states using a divisive decision tree based
clustering algorithm.
English models: The English acoustic models were
trained on about 90 hours of audio training data from
the EPPS English distributed by RWTH. The first pass
models cover 5k triphones with 5k tied states (32 Gaus-
sians per state). The second pass models use a reduced
phone set and were trained on 600 hours of BN data, 150h
with manual transcripts, 450h of selected TDT2,3,4 data
(via light supervision) and adapted with the EPPS data.
The third and fourth pass models are different iterations
of MMIE-trained models, each with about 18k triphones
and 11.5k states (32 Gaussians per state).
Spanish models: The Spanish acoustic models were
trained on about 100 hours of audio training data from
EPPS and Cortes corpora. The first fast models cover 2k
contexts with 2k tied states. The second pass models use
a reduced phone set (merging /s,z/ and the two r’s). The
third and fourth pass models are different iterations of
MMIE-trained models, each with about 6k triphones and
9k tied states (32 Gaussians per state).
Mandarin BN models: The Mandarin acoustic mod-
els were trained on about 27 hours of Hub4-Mandarin

training data (from LDC) and about 170 hours of data
from the TDT2, TDT3 and TDT4 corpora. Most of
these data (about 140 hours) are from VOA. Since time-
aligned transcripts are not available for the TDT corpora,
models were trained using a lightly supervised train-
ing method. [4, 3]. The TDT data from the Mainland
China sources (CNR, CTV and VOA) were transcribed
with a recognizer using the RT03 BN evaluation sys-
tem acoustic models and source/show-specific language
models estimated on the TDT closed captions for each
source/show. Wideband and bandlimited models were
trained by pooling the Hub4 Mandarin data and the TDT
data. The acoustic models are position-dependent tri-
phones with tied states, obtained using a divisive deci-
sion tree based clustering algorithm. Two sets of gender-
dependent acoustic models were built using both MAP
adaptation [5] of SI seed models for each of wideband
and telephone band speech.

5. PRONUNCIATION LEXICA
English: Pronunciations are based on a 48 phone set
(3 of them are used for silence, filler words, and breath
noises). The reduced phone set pronunciations are rep-
resented with 38 phones, formed by splitting complex
phones. A pronunciation graph is associated with each
word so as to allow for alternate pronunciations, includ-
ing optional phones. The 60k case-sensitive vocabulary
contains 59993 words and has 74k phone transcriptions.
As done in the past, compound words for about 300 fre-
quent word sequences subject to reduced pronunciations
were included in the lexicon as well as the representation
of 1000 frequent acronyms as words.
Spanish: Pronunciations are based on a 27 phone set
(3 of them are used for silence, filler words, and breath
noises). A second reduced phone set dictionary merges
variants fors/zandr/R which are poorly distinguished by
the common word phonetization script,. Pronunciations
for the case-sensitive vocabulary are generated via letter
to sound conversion rules, with a limited set of automati-
cally derived pronunciation variants. While the rules gen-
erate reasonable pronunciations for native Spanish words
and proper names, other words are more problematic.
The Unitex(www-igm.univ-mlv.fr/ unitex/)Spanish dictio-
nary was used to locate likely non-Spanish words, which
belong to several categories: typos (which were fixed at
the normalization level); Catalan words, borrowed words
like ‘sir’ or ‘von’, non-Spanish proper nouns which were
hand-phonetized by a native speaker;and acronyms. Non-
Spanish proper nouns were the most difficult to handle,
especially those of Eastern European origin where the
variability in the audio data shows that native Spanish
speakers do know necessarily know how to pronounce
them. The decision taken was to use the perceived phone-
tization for the names which were represented in the au-
dio data, and use the native speaker’s intuition for the
rest. Although including non-Spanish phones to cover
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Language English Spanish Mandarin

#words 60k 65k 54k
#phones 48 / 38 27 / 25 61
#nonspeech 3 3 4
#prons 74k / 74k 94k / 78k 55k

Table 3: Language-specific pronunciation lexicons.

Language English Spanish Mandarin

Dev06 data EPPS EPPS/Cortes BN
#words 60k 65k 54k
OOV 0.3% 0.6% ∼0
Transcripts 690k 471k / 278k 460k ch
EPPS texts 33.5M 36M 600M
BN+CNN 293M+180M
Cortes 47M
4g ppx 88 80 / 102 250

Table 4: Summary of language model development.

foreign words was considered, these were too infrequent
to estimate reliable models so they were replaced with
the closest Spanish phone. Acronyms that tend to be pro-
nounced as words were verified by listening to the audio
data or phonetized by a native speaker. The final lexicon
has 94871 pronunciations for 65004 entries.
Mandarin: The Mandarin lexicon is represented with 61
phones (4 of them are used for silence, filler words, and
breath noises). There are 24 consonants and 11 vowels,
with the 5 tones for vowels are collapsed into 3 (rising,
flat and falling). A pronunciation graph is associated with
each word so as to allow for alternate pronunciations, in-
cluding optional phones. The 54k vocabulary contains
54025 words with 55377 phone transcriptions.

6. LANGUAGE MODELING
For all systems,n-gram language models were ob-

tained by interpolation of backoff n-gram language mod-
els using the modified Kneser-Ney smoothing (as imple-
mented in the SRI toolkit [6]) trained on separate subsets
of the available language model training texts. The char-
acteristics of the language models are summarized in Ta-
ble 4. A neural network LM [7] was trained for English
and Spanish, and interpolated with the 4-gram back-off
LMs.

Word lists for English and Spanish selected by choos-
ing then most probable words after linear interpolation
of unigram LMs trained on the different text sources so as
to minimize the perplexity on the dev data.n is chosen to
minimize the OOV ratio while keeping a reasonable size
and correctness of the words. A 65k case-sensitive word
list was chosen as a good compromise, yielding an OOV
rate of 0.6% on the dev06es data. The 2006 English word
list is case-sensitive and contains 60k words, and has an
OOV rate of about 0.3%.
English: The English language models result from the

interpolation of component LMs trained on 4 sources:
1. Audio transcriptions: 690k (previously 353k words),

(cut-off 0-0-0)
2. Parliamentary texts: 34M (previously 32M words),

(cut-off 0-0-1)
3. CNN captions [01/2000-31/05/2005]: 180M words
4. Broadcast news transcriptions: 293M words,

(cut-off 1-1-2)
The mixture weights where chosen to minimize the per-
plexity of the development data. The 4-gram perplexity
on the dev06en data is about 88 (compared to 92 with last
year’s model). The LM contains about 8.1M bigrams,
32.8M trigrams and 24.2M 4-grams. The perplexity is
reduced to 75 with the NN LM .

Since the new text processing is case sensitive, a de-
cision must be taken as to what the true case of each
sentence-initial word is. Moreover for some texts the ca-
seing is vague (due to emphasis or segmentation errors),
and the caseing of all words needs to be reconsidered.
In order to be able to attribute the correct case for the
sentence-initial word an interpolated LM was constructed
with a set of texts after removing the first word of each
sentence. Caseing is added to the original sentence by
creating a graph with all possible caseings for all words
with multiple caseings, and parsing the graph using the
interpolated LM.

Spanish:Component language models were trained on 6
Spanish text sources:
1. European Parliament transcriptions (471K words)
2. Spanish Parliament transcriptions (268K words)
3. European Parliament final text editions (FTE)

1996-1999 (15M words)
4. European Parliament FTE 1999-2004 (19M words)
5. European Parliament FTE 2004-2005 (2M words)
6. Spanish Parliament texts (47M words)

The texts were normalized to a common form, and
names with multiple written forms were mapped to the
most frequent one (Juncker/Junker, Breshnev/Brezhnev).
Several processing steps were applied to transform the
texts closer to a ’spoken’ form. (Although originating
from speeches, the texts were transformed into a written
form for publication on the web sites.) The main normal-
ization steps are similar to those applied to English [1],
such as the separation of punctuation from words, the ex-
pansion of abbreviations (Sr.→ Seor), the treatment of
numerical expressions (artculo 82.1→ artculo ochenta y
dos uno, 3.900 millones→ tres mil novecientos millones),
removing the sentence initial capitalization when appro-
priate, separating pseudo compound words, and splitting
the texts into sentence-like units. After processing there
were a total of 84M words (225K distinct) and 2.8M sen-
tences.

Separate language models were constructed for speech
recognition and punctuation, the former explicitly mod-
eling speech characteristics and disfluencies, and the lat-
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ter modeling punctuation, but without the disfluencies.
Acronyms not found in the word list were split into their
component letters in order to get an “unknown spelled
acronym” model. The models were first estimated inde-
pendently for each source using the standard Kneser-Ney
smoothing as modified by Chen and Goodman [9]. The
independent models where then interpolated with coeffi-
cients estimated to minimize the perplexity on the devel-
opment data. The perplexity of the EPPS dev06 data with
the 4-gram model is 79.5, and the perplexity of the Span-
ish Parliament dev data is 102.4. The perplexities with
the NN LM are 71.2 and 92.2 respectively.
Mandarin: The 4-gram language models were obtained
by interpolation [10] of backoff 4-gram language models
trained on 8 sources available via the LDC.
1. Hub4 audio transcripts, 460k characters
2. China radio international 1994-96, 87M characters
3. People Daily newspaper, 89.2M characters
4. Xinhua news, 9.9M characters
5. TDT2,3,4 XIN, 12M characters
6. TDT2,3,4 ZBN, 12M characters
7. TDT2,3,4 VOA, 2.3M characters
8. LDC gigaword Mainland texts, 367M characters
The 54k word list was selected from the same text sources
so as to minimize the OOV rate on the dev05 data. The
word list includes all (about 7000) characters (i.e., there
are essentially no OOV characters). The perplexity of the
dev06 data was about 250 with the 4-gram LM.

7. DECODING
For English and Spanish word recognition is per-

formed in four passes, where each decoding pass gener-
ates a word lattice with cross-word, position-dependent,
gender-dependent AMs, followed by consensus [11] de-
coding with 4-gram and pronunciation probabilities. Un-
supervised acoustic model adaptation is performed for
each segment cluster using the CMLLR and MLLR [8]
techniques prior to each decoding pass. The lattices of
the last two decoding pass are rescored by the neural net-
work LM interpolated with a 4-gram backoff LM.

More specifically, the decoding steps are: 1) Ini-
tial hypothesis generation using small cross-word EPPS
acoustic models and audio partitioner 1 (' 1.0xRT); 2)
2 class MLLR adaptation of large BN+EPPS acoustic
models (AMs) for English and large EPPS+Cortes AMs
for Spanish, each with a reduced phone set, and au-
dio partitioner 2; 3) Data driven MLLR adaptation with
large EPPS MMIE-trained AMs for English and large
EPPS+Cortes MMIE AMs for Spanish, neural network
LM interpolated with a 4-gram backoff LM; 4) Data
driven MLLR adaptation with large EPPS MMIE-trained
AMs and large EPPS+Cortes MMIE AMs (the MMIE
AMs are different from step 3), neural network LM in-
terpolated with a 4-gram backoff LM. Table 5 gives the
word error rates on the EPPS dev06 data for English and
Spanish after each decoding pass. The word error after

Decoding Pass
WER(%) Pass1 Pass2 Pass3 Pass4

English EPPS 15.5 11.6 10.0 9.8
Spanish EPPS 10.0 8.3 7.0 6.9

Table 5: Word error rates (%) after each decoding pass for En-
glish and Spanish EPPS dev06 data.

System Feb05 Mar06
Language Task Dev06 Dev06 Eval06

English EPPS 14.0 9.8 8.2
Spanish EPPS 9.8 6.9 7.8

Cortes 13.3
All 10.7

Mandarin BN 10.9 10.7 9.8

Table 6: Word/character error rates on the TC-STAR Dev06
and Eval06 data. Mandarin was a joint submission with UKA.

the first real-time decoding pass is 15.5% for English and
10% for Spanish. The largest improvement is obtained in
the second pass (25% and 17% relative respectively for
English and Spanish), with smaller gains in the subse-
quent passes.

Table 6 gives the recognition results for the evaluation
systems on the TC-STAR Dev06 and Eval06 data sets.
Relative word error rate reductions of about 30% were
obtained for both the English and Spanish systems on the
dev06 EPPS data. In a post-evaluation study, the audio
partitioner was modified to not throw away music seg-
ments, which reduced the overall Spanish WER to 10%.

8. TC-STAR SYSTEM COMBINATION
Various decoding and system combination methods

were studied, based on cross-site adaptation and Rover-
like combination. A subset of the results are reported in
Table 7. The first entry shows the result of Rover com-
bination [12] of five systems with word error rates rang-
ing from 11 to 16%. The combination results in a 15%
gain relative to the best system. Cross-site adaptation,
i.e. adapting LIMSI models using a transcription from
another partner (2nd entry) or from a combination of sys-
tems (third entry), is seen to be very efficient as the re-
sulting word error rate is always lower than (or equal to)
the WER of the adaptation transcripts, and is consider-
ably lower than the WER of the stand alone system (with
relative gains of up to 15%). Even though there were
signficant improvements for all systems (WERs ranging
from 10.1 to 13%), Rover2 obtains almost the same rel-
ative gain as Rover1. Similar observations can be made
for the Spanish systems, where substantial improvements
were made to the systems used in the second Rover.

9. PUNCTUATION
Automatic caseing and punctuation tools have been de-

veloped for English and Spanish. These modules use both
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Data Method Systems WER Rel.Gain

Dev06en Rover1 LIMSI06v3,IBM06v3,RWTH3,IRST3,UKA2 9.4 -15%
Adapt IBM06v2 + LIMSI06v3 9.1 -15%
Rover1 + Adapt + LIMSI06v3 9.0 -16%
Rover2 LIMSI06v4,IBM06v4,UKA4,RWTH4,IRST4 8.7 -14%
Rover2 + Adapt + LIMSI06v4 8.7 -14%

Dev06es Adapt IRST05,LIMSI05e 8.7 -5%
Rover1 LIMSI06v2,RWTH06v2,IBM05,IRST05 6.6 -8%
Rover2 LIMSI06v2,RWTH06v2,IBMv3,IRST06 5.8 -19%

Table 7: Some system combination results on dev06en (top) and dev06es (bottom).

linguistic and acoustic information (essentially pause and
breath noise cues) to add punctuation marks in the speech
recognizer output which can be either a single best hy-
pothesis or a word lattice. Starting with the recognizer
hypotheses with time-marks (CTM file), pauses longer
than 1.7s are located and a word graph is created for each
speech segment. All possible caseings of each word are
added to the graph, as well as optional sentence breaks at
each pause, and optional punctuation marks ( ,COMMA
and .PERIOD) after each word. The resulting augmented
word graph is then decoded with a punctuated, case sen-
sitive LM. (The LIMSI punctuator was not used in the
eval submission but was used for SLT).

10. CONCLUSIONS
This paper has summarized the progress made in

preparation for the second annual TC-STAR speech rec-
ognizer evaluation for the EPPS task in English and Span-
ish and the BN task for Mandarin Chinese. The base-
line performance was that of the Feb’05 systems on the
2006 development data. For English the initial word er-
ror rate was reduced from 14.0% to 9.8% and for Span-
ish the word error rate was reduced from 9.8% to 6.9%.
There was no major development effort for Mandarin
Chinese. The additional features and improvements to
the English and Spanish features include automatic seg-
mentation, four decoding passes with unsupervised adap-
tation, two phone sets per language (full and reduced),
and MLLT, SAT, MMIE training. Large word error rate
reductions of about 30% were obtained compared to last
year’s system.

Innovations contributing to this large performance im-
provement came from new strategies for unsupervised
AM adaptation based on different type of models and dif-
ferent segmentation schemes. Significant improvement is
due to the use of more data to build larger and more ac-
curate models, and improved within site and cross-site
system combination. One idea growing in popularity is
to use alternative models and segmentations in succes-
sive decoding passes so as to reduce the impact of the
recognition errors, segmentation errors and clustering er-
rors on the adaptation process. Improvements also came
from better pronunciation modeling, the use of additional
acoustic features, improved SAT model estimation and

improved discriminative training methods, and improved
neural network LMs.
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