Comparison of Low Footprint Acoustic Modeling Techniques
for Embedded ASR Systems

Jussi Leppdnen and Imre Kiss

Multimedia Technologies Laboratory, Nokia Research Center
Tampere, Finland

{j ussi.ar. Il eppanen,

Abstract

In this paper we compare the performance of speech
recognition systems based on hidden Markov models (HMM)
with quantized parameters (qHMMs) and subspace
distribution clustering hidden Markov models (SDCHMMs).
Both of these HMM types provide similar performance as
continuous density HMMs, but with significantly reduced
memory requirements (approximately 90% less memory was
needed to store the HMM densities). The experiments show
that on a small vocabulary isolated word recognition task,
SDCHMMs outperform qHMMs in clean conditions.
However, when noisy test data is used and adaptation is
enabled gHMMs outperform the SDCHMMs. In addition, the
experiments show that as low as 3-bit feature quantization can
be used with both qHMMs and SDCHMMs without
sacrificing recognition performance.

1. Introduction

Voice User Interfaces are becoming a standard feature in
personal mobile devices, such as mobile phones. Several
devices in the market support voice input in the form of
speaker dependent or speaker independent name dialing, while
others are able to read aloud messages by using text-to-speech
(TTS) technology.

For these embedded devices, the low footprint and low
complexity implementation of the underlying ASR and TTS
algorithms is especially important. One of the reasons for this
is that even though memory and processing power are
becoming more and more affordable, cost will always be an
important factor for mass-market products.

In addition, Voice Ul is only one of the rich set of features
supplied in modern mobile devices, and in many cases several
of these features need to be active at the same time.

In this paper we concentrate on low footprint acoustic
modeling techniques for embedded ASR systems. In Sections
2 and 3 we describe the two main footprint reduction
techniques (SDCHMMs and qHMMs). In Section 4 we
compare the properties of these techniques, and continuous
density HMMs. In Section 5 we compare these two techniques
in terms of effect on recognition accuracy and the associated
memory footprint. Conclusions are drawn in Section 5.

2. Subspace Distribution Clustering HMMs

Subspace distribution clustering HMMs (SDCHMMs) were
introduced by Bocchieri and Mak in [1]. They were shown to
provide computational and memory savings, without
degrading recognition performance, when compared to
continuous density HMMs. The basic idea is similar to density
tying, but the tying is done on subspace distributions instead

i nTe. ki ss} @oki a.com

of the full-space distributions. The SDCHMM implementation
used in this paper differs slightly from the one described in [1]
and [2] and is explained briefly below.

SDCHMMs are trained by first dividing the continuous
distributions of the original HMM model set into orthogonal
subspaces and then clustering these subspace distributions into
prototype distributions. The clustering is done separately for
every subspace, so that as a result there is a separate prototype
set (codebook) for each subspace. The parameters of the
original distributions can then be replaced by indices to the
codebooks.

The clustering of the continuous distributions is done using a
binary, divisive k-means clustering algorithm. The algorithm
starts with all distributions belonging to a subspace in a single
cluster. At each iteration of the algorithm, every cluster is split
into two and then k-means is run for a few iterations. The
algorithm is run until the desired number of clusters
(codebook size) is obtained. The distance measure used in the
k-means algorithm is the Bhattacharya distance [3].

Before the clustering can be done, the subspaces have to be
defined. This is done by finding the features that correlate the
most and grouping them together to form the subspaces. The
multiple correlation measure, for example, can be used to find
the most correlated features [2]. In this paper, all experiments
using SDCHMMs are done with single-feature subspaces
(these were found to work best in our tests). Thus, subspace
definition was not needed in our experiments.

3. Quantized HMMs

Quantized HMMs (qHMMs) were proposed in [4]. They were
found to reduce memory consumption substantially while
maintaining the high recognition accuracy of continuous
density HMMs.

QHHMs are built starting from continuous density HMMs by
scalar quantizing the mean and variance parameters. Here only
two global quantizers are used, one for the mean values and
one for the variance values. The use of one quantizer for all
mean values and one for all variance values is potentially
problematic as the dynamic range of the feature components
varies from component to component. Applying a global
normalization of the feature space such that zero mean and
unity variance components are achieved, however, mitigates
this problem. This is in contrast with the SDCHMM case,
where there is a separate quantizer (or codebook) for each
subspace and thus no normalization is required'. The actual
quantization is done using a non-linear Lloyd-Max quantizer.
The distance measure used during training of both the mean
and variance quantizer was the Euclidian distance.

" The use of a single codebook for all features was also tried
for SDCHMMs, but it resulted in reduced performance.

4. Comparisons

4.1. Codebooks

Figure 1 and Figure 2, below, show the mean vs. inverse
standard deviation scatter plots of the 2™ cepstral coefficient
with 4-bit gHMM and SDCHMM codebooks superimposed.
The differences in the codebooks for SDCHMMs and gHMMs
can be seen quite clearly. The SDCHMM codebook elements
are nicely situated on top of the densities. For the gHMMs, the
placement of the codebook elements does not appear to be
very optimal. This is explained by the fact that the same
codebook is used for all features and is optimal over all of
them.

25,

=

=

w 2t

s

(sl]

=

= 15]

= P L EEEE S #

s

=

w Lt

2 P A BAEA A *

3 05
0 '
3 2 1 0o 1 2 3

Mean

Figure 1 Scatter plot of the 2nd cepstral coefficient
superimposed with the 4-bit gHMM codebook values.

25
=
=
' 2}
3
=
- 15}
[nsd
el
5 1 +
o +

+

ﬁ o *l ¥ " Pl T
E 05t

I:I 1 1 1 1 1]

-3 -2 -1 1] 1 2 3

hean

Figure 2 Scatter plot of the 2nd cepstral coefficient
superimposed with the 4-bit SDCHMM codebook
values.

4.2. Probability calculation and feature quantization

During decoding, the calculation of the state probabilities for
mixture Gaussians in log-domain is done using the following
formula:

K
logb(x)=10gZexp log| wy

1
o n[]iﬂ/zm,%»
N (. _, R
_Z(xi :ukz)} (1)

o 207
where K is the number of densities and N is the feature vector
dimension. For each density, there are two parts, a constant
and the Mahalanobis distance to the feature vector x.
When using SDCHMMs or gHMMs, once a feature vector is
obtained, the Mahalanobis distances can be calculated for the
codebook elements. Once this is done, the actual probabilities
for the densities can be calculated by summing up the
appropriate distances for each density. In the gHMM case, the
number of distance calculations is less than in the SDCHMM
case because the same codebook is used for all features. For
example, when using 39 element feature vectors and 4-bit
codebooks, the number of distance calculations that are
needed for gHMMs is 16, one for each codebook element. For
SDCHMM the corresponding number is (16x39=) 624. This is
quite many compared to the qHMM case, but still very
efficient (the number of summations needed to calculate the
probabilities for 3000 densities for example is still (39 x
3000=) 117000).
The probability calculation can be further speeded up by the
use of feature quantization [6]. When the incoming feature
vectors are quantized the Mahalanobis distances of the above
equation can be calculated before the decoding begins. Here
again the number of distance calculations is greater for
SDCHMMs than for gHMMs.

4.3. Memory footprint

When using SDCHMMs or gHMMs, the mean and variance
values of the densities are replaced by indices to the
codebooks. The space needed to store the indices depends on
how large the codebooks are. For example, 39 bytes are
needed to store a single density when 8-bit codebooks and 39
element feature vectors are used. This is significantly lower
than for the continuous case where (32bits x 2 x 39=) 312
bytes are needed (assuming that 32-bit floating point numbers
are used for the mean and variance values). Since the densities
take up the majority of space required for the whole model set,
significant memory saving can be achieved. Storing the
codebooks, however, requires memory, but this is usually
insignificant compared to the memory required for the
densities. This is the case also for SDCHMMSs, where a
codebook is required for every subspace. The memory
required for the model sets used in this paper can be found in
Table 2.

5. Experiments

5.1. Recognition system and acoustic model sets

The performance of gHMMs and SDCHMMs was tested on a
small vocabulary isolated word task in several languages. The
in-house test set used here was made up of approximately 40k

words from seven European languages: Finnish, Swedish,
German, English, Danish, Icelandic and Norwegian. The size
of vocabulary per language was approximately 120.

The front-end used in the experiments was based on FFT-
derived Mel cepstral coefficients and their first and second
order derivatives (39 coefficients in total). Recursive mean
removal was applied on all components of the resulting feature
vectors, and the variance of the energy component and its
derivatives was normalized to unity [7].

The baseline acoustic model sets used for the tests contained
standard 3-state monophone models with 8 and 16 densities
per state. The model sets were trained on an in-house training
set containing data from various European languages. Both
sets contained a total of 75 multilingual phone models that
were used to model the basic acoustic units of the seven
European languages mentioned above. The number of
densities in the 16-mixture set was 3568 and for the §-mixture
set there were 1784 densities. The recognition accuracies of
the baseline sets can be seen in Table 1, labeled as BL_8 and
BL_16.

For both of the baseline model sets, a pair of gHMM model
sets was trained. One set using 5-bit quantization for the
density means and 3-bit quantization for the variances, and the
other set using 3 and 1 bits, respectively. The recognition
accuracies for these models can be seen in Table 1, labeled as
Q _x_y+z, where x is the number of densities per state, y the
number of bits used in quantizing the means and z the number
of bits used for quantizing the variances. The 5+3 and 3+1
quantizations used here were chosen for the reason that they
allow convenient packing of the mean-variance pairs into
bytes.

Similarly, four SDCHMM systems were also trained. These
sets were trained based on the two baseline sets resulting in
16-mixture and 8-mixture models that have 4-bit and 6-bit
codebooks. The recognition rates can be found in Table 1,
labeled similarly to the gHMMs. There are no recognition
rates for 8-bit codebooks because the number of densities in
the model sets was not sufficient for training them.

Model set Accuracy Model set Accuracy

BL 8 96.51% BL 16 97.33%
Q 8 513 96.53% Q 16 543 97.24%
Q 8 3+1 95.58% Q 16 3+1 96.55%
SS 8 6b 96.38% SS 16 6b 97.26%
SS 8 4b 96.41% SS 16 4b 97.19%

Table 1 Word accuracies (clean speech, no
adaptation).

From the above results, it can be seen, that using a 5+3 bit
codebook for gHMMs and 6-bit codebooks for SDCHMMs
only marginally degrades the performance. When reducing the
codebook size to 4 bits, further degradation of the
performance can be seen. However, this degradation is much
smaller for the SDCHMMs than for the gHMMs. Note that,
16-mixture, 4-bit codebook SDCHMMs perform better than 8-
mixture, 5+3-bit gHMMs, even though their memory footprint
is comparable (see Section 5.2).

5.2. Memory figures

As mentioned before, significant saving in the memory
footprint of the acoustic models can be achieved when using
qHMMs or SDCHMMs. In Table 2, below, the memory

required to store the densities of the various acoustic model
sets used in these experiments is shown. For the baseline
models, it is assumed that the mean and variance values are
represented using 32 bit floating-point numbers. For the
gqHMMs and SDCHMMs, when 4-bit quantization is used, the
memory needed is calculated by assuming that two 4-bit
values are stored in a single byte. In the 6-bit SDCHMM
model set, it is assumed that, the 6-bit values are each stored
in a byte. While the memory needed for the densities is similar
for gHMMs and SDCHMMs, the memory needed to store the
codebooks is not. Because of the use of separate codebooks
for each stream, the codebooks of the SDCHMMs require
more memory. However, since the densities require much
more memory the memory needed for the codebooks is not
very significant.

Model set Densities Codebooks Total

BL 8 557kB - 557kB
BL 16 1.IMB - 1.IMB

Q 8 3+l 35kB 20B 35kB
Q8 5+3 70kB 80B 70kB
Q 16 3+1 70kB 20B 70kB
Q 16 5+3 140kB 80B 140kB
SS 8 4b 35kB 1kB 36kB
SS 8 6b 70kB 5kB 75kB
SS 16 4b 70kB 1kB 71kB
SS 16 6b 140kB 5kB 145kB

Table 2 Memory needed for the storage of densities
and codebooks of gHMMs and SDCHMM:s.

For the rest of the experiments, the recognition rates will be
shown for model sets Q 8 5+3, Q 16 3+1, SS 8 6b and
SS 16 _4b. These were chosen as their memory footprint is
about the same size (~70kB).

5.3. Performance in noise and with adaptation

Next, the performance of qHMMs and SDCHMMs were
tested in noisy conditions and with adaptation. Table 3 shows
the recognition rates for the baseline systems and for two
qgHMM model sets and two SDCHMM model sets. The
adaptation method used here was supervised MAP, which was
applied to the models after each recognized word [8]. Only the
model means were adapted. Also, the actual codebooks were
not adapted; only the density indices pointing to the
codebooks were updated during adaptation [5]. The noisy data
was created by randomly adding noise from different sources
and at different levels. Car, café, concert noise were included.
The SNR of the noisy data ranged from 5 to 20dB.

Clean Noise

Model set Adapt Adapt
BL 8 96.51% 98.59% 87.47% 94.49%

BL 16 9733% 98.93% 88.23% 95.04%

Q 8 5+3 96.53% 98.53% 87.53% 94.28%

Q 16 3+1 96.55% 98.32% 87.38% 92.49%
SS 8 6b 96.38% 98.41% 86.87% 93.25%

SS 16 4b 97.19% 98.62% 88.00% 92.77%

Table 3 Word accuracies in clean and noisy
conditions (5 to 20dB SNR) with and without MAP
adaptation.

As it can be seen, from Table 3, the recognition accuracies for
clean speech with adaptation enabled are quite even for the
qHMM and SDCHMM models. However, when noisy data
was used, some differences in the scores can be observed. The
SS 16 _4b set gave the best performance and the SS_8 6b the
worst. The accuracies for the two qHMM sets were between
the accuracies of the two SDCHMM sets.

When adaptation was enabled and noisy data was used,
significant differences in the recognition accuracies could be
seen. While all cases benefited from the MAP adaptation, the
recognition rates of the 8-mixture models were improved
much more than the recognition rates of the 16-mixture
models. The reason for this might be explained by the fact that
both (qHMM and SDCHMM) 16-mixture models use 4-bit
quantization which is coarser than the quantization used for
the 8-mixture models (6-bit or 8-bit) and the fact that
adaptation is done on the indices pointing to the density
codebooks and not on the codebooks themselves. To
elaborate, during adaptation a density index is changed only if
the density after adaptation is closer to another codebook
element than the one it was pointing to before. Thus, the
coarser the quantization used, the less likely it is for a density
index to change during adaptation. In addition, it can be seen
from the results that qHMM models responded better to
adaptation than SDCHMM models, especially in the presence
of noise.

5.4. Feature quantization

As was mentioned in Section 4.2, the recognition speed can be
further increased by the use of feature quantization. The
recognition accuracies for a few qHMM and SDCHMM model
sets and different feature quantizations are shown in Table 4.
The feature quantizers used here were trained exactly like the
mean and variance quantizers of the gHMMs and were trained
on the mean values of the densities in the baseline model sets.

Feature quantization
Model set 5 bits 4 bits 3 bits 2 bits

Q 8 5+3 96.53% 96.56% 95.97% 91.54%
Q 16 3+1 96.49% 96.65% 96.43% 94.83%
SS_ 8 6b 96.45% 96.78% 95.72% 91.51%
SS 16 4b 97.19% 97.25% 96.78% 94.16%

Table 4 Word accuracies with feature quantization
(clean speech, no adaptation).

From Table 4, above, it can be seen that, for SDCHMMs even
as low as 3-bit quantization of the features does not degrade
performance significantly. With 4-bit quantization, the
performance is even better than without feature quantization.
The same kind of performance can also be seen for gHMMs.

6. Conclusions

In this paper, we have compared the performance of two low
footprint acoustic modeling techniques, qHMMSs and
SDCHMMs. Compared with continuous density HMMs, both
techniques provided memory savings and probability
calculation speed up without sacrificing recognition accuracy
significantly. The memory footprint of qHMMs and
SDCHMMs was found to be much smaller than for the
continuous density HMMs. The densities of the gHMM and

SDCHMM model sets could be represented in only 6% to
13% of the bytes needed for the continuous case. Moreover,
the memory footprint of gHMMs was slightly smaller than
the SDCHMM memory footprint because of the differences in
the number of codebooks used.

The SDCHMMs outperformed the qHMMs in clean
conditions (97.19% for the SS_16_4b set vs. 96.53% for the
Q 8 5+3 set). This was also noticed for noisy test data
(88.00% vs. 87.53%). When adaptation was enabled,
however, the improvement in the results was greater for the
qHMMs than for the SDCHMMSs. This was most evident in
the noisy case where the gHMMs clearly outperformed the
SDCHMMs (92.77% vs. 94.28%).

In addition, the performance of qgHMMs and SDCHMMs was
tested with feature quantization. For both cases, even as low
as 3-bit quantization was found to give acceptable recognition
rates.

7. Acknowledgements

This work has partially been funded by the European Union
under the integrated project TC-STAR - Technology and
Corpora for Speech to Speech Translation -(IST-2002-FP6-
506738, http://www.tc-star.org).

8. References

[1] Bocchieri E. and Mak B., “Subspace Distribution
Clustering for Continuous Observation Density Hidden
Marko Models”, Proceedings of the 5t European
Conference on Speech Communication Technology, Vol.
1, pp. 107-110, 1997.

[2] Bocchieri E. and Mak B., “Subspace Distribution
Clustering Hidden Markov Model”, IEEE Transactions
on Speech and Audio Processing, 9(3) pp. 264-275,
March 2001.

[3] Webb A., Statistical Pattern Recognition, Arnold, 1999.

[4] Vasilache M., “Speech Recognition Using HMMs with
Quantized Parameters”, Proceedings of the International
Conference on Spoken Language Processing, Vol.1, pp.
441-443, Beijing, China, 2000.

[5] Vasilache M. and Viikki O. “Speaker Adaptation of
Quantized Parameter HMMs”, Proceedings of
Eurospeech-Scandinavia, Vol. 2, pp. 1265-1268,
Aalborg, Denmark, 2001.

[6] Vasilache M., Iso-Sipiléd J. and Viikki O., ”On a Practical
Design of a Low Complexity Speech Recognition
Engine”, Proceedings of the International Conference on
Acoustics, Speech and Signal Processing, Vol. 5, pp.
113-116, Montreal, Quebec, Canada, 2004.

[7] Viikki O., Bye D. and Laurila K., ”A Recursive Feature
Vector Normalization Approach for Robust Speech
Recognition in Noise”, Proceedings of the International
Conference on Acoustic, Speech and Signal Processing,
Seattle, WA, USA, 1998.

[8] Gauvain J.-L., Lee C.-H., "Maximum a Posteriori
Estimation of Multivariate Gaussian Mixture
Observations of Markov Chains”, IEEE Transaction on
Speech and Audio Processing, Vol. 2, No. 2, pp. 291-
298, 1994.

