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Abstract 
This paper describes Nokia’s work on complexity reduction of automatic speech recognition (ASR) algorithms. The aim of this paper 
is to explore algorithms for reduction of memory foot-print of acoustic models. In this paper we compare the performance of speech 
recognition systems based on hidden Markov models (HMM) with quantized parameters (qHMMs) and subspace distribution 
clustering hidden Markov models (SDCHMMs). The quantized models were tested on 2006 TC-STAR English parliamentary speech 
transcription task. It is shown that as low as 4-bits can be used for qHMMs and 2 bits/subspace for SDCHMMs without sacrificing 
recognition performance. 
 

1. Introduction 
Spoken language translation (SLT) has a lot of potential 
applications in mobile devices. To bridge the language barrier 
between two users, SLT can be used in translating the speech 
from speaker’s language to that of the listener’s language.  The 
first step is converting the source speech to text (ASR) and then 
translating the text in target language (MT) and finally 
converting the text to speech (TTS). The performance of 
different components in SLT has improved over the past few 
years to a point where it can be deployed in domain specific 
systems in real life.  
 

In the case of resource constrained mobile devices, it is 
beneficial to have small footprint and low complexity 
implementation of the algorithms for better user experience.   In 
this paper we focus on evaluating small footprint acoustic 
modelling techniques for embedded ASR systems. State of the 
art ASR systems use Continuous Density HMMs (CDHMM) for 
acoustic modelling. For CDHMM based continuous speech 
recognisers, the number of densities in the acoustic models is in 
the order of tens of thousands. If the parameters of the densities 
are stored in floating point format they occupy a lot of space in 
memory. Moreover, the largest computationally intensive 
component in ASR is the calculation of likelihood of the feature 
vector given a Gaussian density.  
 

In this paper we examine two approaches to reduction in 
foot-print size of acoustic models and computation without 
sacrificing the recognition performance. In Sections 2 and 3 we 
describe the footprint reduction techniques. In Section 4 we 
compare the properties of these techniques, and continuous 
density HMMs. Experiments and results are explained in Section 
5 and finally conclusions in Section 6. 

2. Subspace Distribution Clustered HMMs 
Subspace distribution clustering HMMs (SDCHMMs) were 
introduced by Bocchieri and Mak in [1].  They were shown to 
provide computational and memory savings, without 
significantly degrading recognition performance, when 
compared to continuous density HMMs. The basic idea is similar 
to density tying, but the tying is done on subspace distributions 
instead of the full-space distributions. The SDCHMM 
implementation used in this work differs slightly from the one 
described in [1] and [2]. It is explained briefly below. 
 

First, CDHMMs are trained. The SDCHMMs are 
obtained from CDHMMs by first dividing the continuous 
distributions of the original model set into orthogonal subspaces 

and then clustering these subspace distributions into prototype 
distributions. The clustering is done separately for every 
subspace, so that as a result there is a separate prototype set 
(codebook) for each subspace. The parameters of the original 
distributions can then be replaced by indices to the codebooks.  

 
The clustering of the continuous distributions is done 

using a binary, divisive k-means clustering algorithm. The 
algorithm starts with all distributions belonging to a subspace in 
a single cluster. After each iteration, each cluster is split into two 
and then k-means is run for a few iterations. The algorithm is run 
until the desired number of clusters (codebook size) is obtained. 
The distance measure used in the k-means algorithm is the 
Bhattacharya distance [3]. Before clustering can be done, the 
subspaces have to be defined. This is done by finding the 
features that correlate the most and grouping them together to 
form the subspaces. The multiple correlation measure, for 
example, can be used to find the most correlated features [2]. In 
this paper, all experiments using SDCHMMs are performed with 
single-feature subspaces (these were found to work best in our 
tests). Thus, subspace definition was not needed in our 
experiments. 

. 

3. Quantized HMM 
Quantized HMMs (qHMMs) were proposed in [4]. They  reduce 
memory consumption substantially while maintaining the high 
recognition accuracy of continuous density HMMs.  
 

Like in the case of SDCHMM, qHMMs are also built from 
continuous density HMMs. The mean and variance parameters 
of CDHMMs are scalar quantized. to obtain qHMM. Here only 
two global quantizers are used, one for the mean values and one 
for the variance values. The use of one quantizer for all mean 
values and one for all variance values is potentially problematic 
as the dynamic range of the feature components varies from 
component to component. By normalizing the feature space to 
zero mean and unity variance and assuming that the features are 
uncorrelated a single quantizer can be used for all the mean 
components and another one for all the variance components. 
This is in contrast with the SDCHMM case, where there is a 
separate quantizer (or codebook) for each subspace and thus no 
normalization is required. The actual quantization is done using 
a non-linear Lloyd-Max quantizer. The distance measure used 
during training of both the mean and variance quantizer was the 
Euclidian distance. 

Figure 1 shows the procedure of deriving qHMM and 
SDCHMM from a trained CDHMM based acoustic model set. 



4. Comparison 

4.1. Codebooks 
Figure 2 and 3, below, show the mean vs. inverse standard 
deviation scatter plots of the 2nd cepstral coefficient with 4-bit 
qHMM and SDCHMM centroids superimposed on them. The 
differences in the codebooks for SDCHMMs and qHMMs can be 
seen quite clearly. The SDCHMM codebook elements are clearly 
located on the dense regions of the scatter plot. For qHMMs, the 
placement of the codebook elements does not appear to be very 
optimal. This is explained by the fact that the same codebook is 
used for all features and is optimal over all of them. 

4.2. Memory footprint 
When using SDCHMMs or qHMMs, the mean and variance 
values of the densities are replaced by indices of the codebooks. 
The space needed to store the indices depends on how large the 
codebooks are. For example, 39 bytes are needed to store a 
single density when 8-bit codebooks and 39 element feature 
vectors are used. This is significantly lower than for the 
continuous case where (32bits x 2 x 39=) 312 bytes are needed 
(assuming that 32-bit floating point numbers are used for the 
mean and variance values). Since the densities take up majority 
of the space required for the whole model set, significant 
memory saving can be achieved. Storing the codebooks, 
however, requires memory, but this is usually insignificant 
compared to the memory required for the densities. This is the 
case also for SDCHMMs, where a codebook is required for 
every subspace. 

4.3. Probability calculation and feature 
quantization 

During decoding, the calculation of the state probabilities for 
mixture Gaussians in log-domain is done using the following 
formula: 
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where K is the number of densities and N is the feature vector 
dimension. For each density, there are two parts, a constant and 
the Mahalanobis distance to the feature vector x. 
When using SDCHMMs or qHMMs, once a feature vector is 
obtained, the Mahalanobis distances can be calculated for the 
codebook elements. Once this is done, the actual probabilities for 
the densities can be calculated by summing up the appropriate 
distances for each density. In the qHMM case, the number of 
distance calculations is less than in the SDCHMM case because 
the same codebook is used for all features. For example, when 
using 39 element feature vectors and 4-bit codebooks, the 
number of distance calculations that are needed for qHMMs is 
16, one for each codebook element. For SDCHMM the 
corresponding number is (16x39=) 624. This is quite many 
compared to the qHMM case, but still very efficient (the number 
of summations needed to calculate the probabilities for 3000 
densities for example is still (39 x 3000=) 117000).  

 
The probability calculation can be further speeded up by the 

use of feature quantization [5]. When the incoming feature 
vectors are quantized, the Mahalanobis distances of the above 
equation can be calculated before the decoding begins. Here 
again the number of distance calculations is greater for 
SDCHMMs than for qHMMs. 

5. Experiments 

5.1. Recognition system and acoustic model sets 
As part of the TC-STAR 2006 EPPS English transcription task, 
we evaluated the acoustic model compression schemes. 
 

The front-end used in the experiments was based on 
FFT-derived Mel cepstral coefficients and their first and second 
order derivatives (39 coefficients in total). Recursive mean 
removal was applied on all components of the resulting feature 
vectors, and the variance of the energy component and its 
derivatives was normalized to unity [6]. 
 

The baseline acoustic model sets used for the tests 
contained left to right 3-state cross-word context dependent 
phoneme models with 16 densities per state. The model sets 
were trained on an in-house training set containing about 200 
hours of speech data from Wall Street Journal (US Engligh), 
Speecon US and internally recorded databases. The states are 
clustered using a decision tree. The final model set had about 
35,000 Gaussian densities in it. 
 

The recogniser is HTK [7] based. The word lattices 
were obtained from LIMSI. Lexicon had about 17,000 words in 
it. Pronunciations for many of the words were generated using an 
automatic text to phoneme mapping tool. Language model scores 
were obtained from the lattice. The language model scale factor 
was tuned on a small development data set. 
 

Using the CDHMMs, a pair of qHMM model sets was 
trained. One set using 5-bit quantization for the density means 
and 3-bit quantization for the variances, and the other set using 3 
and 1 bits, respectively. The recognition accuracies for these 
models can be seen in Table 1, labeled as qHMM ym+zv, where 
y the number of bits used in quantizing the means and z the 
number of bits used for quantizing the variances. The 5+3 and 
3+1 quantizations used here were chosen for the reason that they 
allow convenient packing of the mean-variance pairs into bytes. 
Similarly, two SDCHMM systems were also trained with 2-bits 
and 4-bits codebooks.  Test consisted of recordings of English 
portion of European parliamentary speech from plenary sessions. 
The total duration of test data is about 3 hours. It contains about 
40 speakers, out of which 30 are native speakers and 10 are non-
native. The recognition rates can be found in Table 1, labeled 
similarly to the qHMMs.  
 
 

Model set Word Error Rate(%) 
Baseline (CDHMM) 18.3 
qHMM 5m+3v 18.3 
qHMM 3m+1v 18.4 
SDCHMM 4bits/stream 18.4 
SDCHMM 2bits/stream 18.6 

Table 1 Word Error Rate (WER) on parliamentary 
English speech. 

 
From the above results, it can be seen, that using a 5+3 bit 
codebook for qHMMs and 4-bit codebooks for SDCHMMs has 
little effect on the performance. When reducing the codebook 
size to 2 bits for SDCHMM and 3+1bits for qHMMs, further 
degradation of the performance can be seen. But the difference is 
statistically insignificant. 

5.2. Memory figures 
As mentioned before, significant saving in the memory footprint 
of the acoustic models can be achieved when using qHMMs or 



SDCHMMs. In Table 2, below, the memory required to store the 
densities of the various acoustic model sets used in these 
experiments is shown. For the baseline models, it is assumed that 
the mean and variance values are represented using 32 bit 
floating-point numbers. While the memory needed for the 
densities is similar for qHMMs and SDCHMMs, the memory 
needed to store the codebooks is not. Because of the use of 
separate codebooks for each stream, the codebooks of the 
SDCHMMs require more memory. However, since the densities 
require much more memory, the memory needed for the 
codebooks is not very significant. It can be seen from the table 
that a reduction of up to 90% in size can be obtained without any 
degradation in recognition performance. 
 

Model set Model size (MB) 
Baseline (CDHMM) 11 
qHMM 5m+3v 1.1 
qHMM 3m+1v 0.7 
SDCHMM 4bits/stream 1.9 
SDCHMM 2bits/stream 1.8 

Table 2 Memory needed for the storage of densities and 
codebooks of qHMMs and SDCHMMs. 

6. Conclusions 
We presented Nokia’s work on small foot-print acoustic 
modeling algorithms and compared the performance of two 
small footprint acoustic modeling techniques, qHMMs and 
SDCHMMs on TC-STAR European Parliamentary speech data. 
Compared with continuous density HMMs, both techniques 
provided memory savings and probability calculation speed up 
without sacrificing recognition accuracy significantly. The 
memory footprint of qHMMs and SDCHMMs was found to be 
much smaller than for the continuous density HMMs. The 
densities of the qHMM and SDCHMM model sets could be 
represented in only 10% of the bytes needed for the continuous 
case. Moreover, the memory footprint of qHMMs was slightly 

smaller than the SDCHMM memory footprint because of the 
differences in the number of codebooks used. 
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Figure 1. Derivation of qHMM and SDCHMM from 
CDHMM.  

Figure 2 Scatter plot of the 2nd cepstral coefficient 
superimposed with the 4-bit qHMM codebook values. 
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Figure 3 Scatter plot of the 2nd cepstral coefficient 
superimposed with the 4-bit SDCHMM codebook 
values. 

 


