
Data-Driven Approaches for Automatic Detection of Syllable Boundaries

Jilei Tian

Audio-Visual Systems Laboratory
Nokia Research Center, Tampere, Finland

jilei.tian@nokia.com

Abstract
Syllabification is an essential component of many speech and
language processing systems. The development of automatic
speech recognizers frequently requires working with subword
units such as syllables. More importantly, syllabification is an
inevitable part of speech synthesis system. In this paper we
present data-driven approaches to supervised learning and
automatic detection of syllable boundaries. The generalization
capability of the learning is investigated on the assignment of
syllable boundaries to phoneme sequence representation in
English. A rule-based self-correction algorithm is also
proposed to automatically correct some syllabification errors.
We conducted a series of experiments and the neural network
approach is clearly better in terms of generalization
performance and complexity.

1 Introduction
The development of speech synthesizers and speech
recognizers often requires working with subword units such as
syllables. For instance, robust speech recognition often makes
use of word spotters based on syllables for detecting out-of-
vocabulary speech and for modeling unknown words in
spontaneous speech. Syllabification plays a key role in any
text-to-speech (TTS) system [1]. In many languages the
pronunciation of phonemes is a function of their location in the
syllable relative to the syllable boundaries. Location in the
syllable also has a strong effect on the duration of the phone,
and is therefore a crucial piece of information for any model of
segmental duration. Syllable is also used to assign the
strong/weak stress on the word, e.g. the English noun Insult vs.
the related verb inSULT.

The system being developed requires study on the
algorithm for dividing words into syllables, due to the fact that
a commonly accepted algorithm shared among the linguistic
community does not exist. In the linguistic literature, we can
find grammatical rules or attempts to explain the division of
words into syllables [2]; it usually requires comprehensive
linguistic knowledge. Probabilistic context-free grammar
(PCFG) was proposed in [3], but the performance seems
having a room for improvement. It also requires a larger
training database to get statistical information. The neural
network applied to the assignment of syllable boundaries to
orthographic representation was also presented in [4].
Precisely it hyphens the word, rather than syllabification in the
phoneme sequence. Since the phoneme sequence, rather than
orthographic representation, contains more information to
extract spoken syllables, the reported performance is limited.
In recent years finite-state transducers (FSTs) have become

increasingly popular as a flexible and mathematically elegant
computational model for the conversion and mapping between
symbol strings, most notably in the domains of phonology and
morphology [1]. Paper [5] presents a finite-state model for
syllabification. The syllabifier is implemented as a weighted
finite-state transducer. The transducer is constructed by
obtaining syllables as well as their structure and frequencies
from a training database. Observed frequencies of onset,
nucleus and coda types are converted into weights, which are
then associated with the pertinent transitions between states in
the transducer. It requires a large training database and
generalization capability for unseen data is not studied.

In this paper, we investigate data-driven approaches for
modeling syllabification. Decision tree- and neural network-
based approaches are compared and evaluated. The study is
mainly focused on the generalization capability of the learning.
It is aiming to train a robust model that can be used for various
types of data. Then it is feasible in practice to label small
amount of training data without profound linguistic
knowledge. With the help of general rules, the self-correction
algorithm is introduced. Our results indicate that a suitable
neural network provides clearly better overall performance and
smaller model size than decision trees. Particularly, the
generalization performance of neural networks is superior.

The remainder of the paper is organized as follows. We
first describe how to structure syllables in Section 2. After
that, we briefly review both the decision tree- and the neural
network-based methods. The self-correction algorithm is also
introduced in Section 3. The performance of the proposed
approaches is evaluated in terms of generalization capability,
complexity and syllabification accuracy in Section 4, with
concluding remarks in Section 5.

2 Syllable structure
A syllable is a basic unit of word studied on both the phonetic
and phonological levels of analysis. It is typically composed of
more than one phoneme. No matter how easy it can be for
people and even for children to count the number of syllables
in a sequence in their native language, still there are no
universally agreed upon phonetic definitions of what a syllable
is. It is phonologically believed that syllable is a complex unit
made up of nuclear and marginal elements. Nuclear elements
are the vowels or syllabic segments, and marginal elements are
the consonants or non-syllabic segments. Standard dictionaries
provide syllabification that is influenced by the morphological
structure of words; it is common in such dictionaries to split
prefixes and suffixes from stems. For instance, some
dictionaries syllabify the word glamour as [g l ae m – er],
whereas the more plausible syllabification in speech is [g l ae -

m er]. Our output produces the latter and hence is more
faithful to spoken syllables. Syllabification ought to represent
the properties of spoken utterances, rather than morphological
structure, particularly true for ASR and TTS systems.

A syllable can be described by a series of grammars [3].
The simplest grammar is the phoneme grammar, where a
syllable is tagged with the corresponding phoneme sequence.
The consonant-vowel grammar describes a syllable as a
consonant-vowel-consonant (CVC) sequence. The syllable
structure grammar divides a syllable into onset, nucleus and
coda (ONC) as shown in Figure 1. The nucleus is obligatory
which can be either a vowel or a diphtong. An onset is the first
part of a syllable consisting of consonants and ending to the
nucleus of the syllable. e.g. /t/ is the onset of the syllable [t eh
k s t]. A nucleus is the vowel part of a syllable, e.g. /eh/ in the
syllable. A coda is the part of a syllable that follows the
nucleus. A coda is constructed of consonants, e.g. /k s t/ in the
syllable. The nucleus and coda are combined to form the
rhyme of a syllable. A syllable has a rhyme, even if it doesn't
have a coda.

In the syllable structure grammar, the consonants are
assigned as onset or coda. It contains more information than
the CVC structure for multi-syllable words. The syllable
structure grammar is used throughout the paper. The phoneme
sequence is mapped into its ONC representation. The model is
trained on the mapping. In the decoding phase, given a
phoneme sequence, the ONC sequence is first generated, and
then the syllable boundaries are uniquely decided on the ONC
sequence. For invalid ONC sequences, a self-correction
algorithm is applied to solve the problem by utilizing certain
common linguistic rules. Now, the syllabification task is
divided into the following steps.
1. The pronunciation phoneme string is mapped to ONC

string, for example:
(word) text -> (pronunciation) t eh k s t -> (ONC) O N C C C
2. Training on the data in the format of “pronunciation ->

ONC”
3. Given the pronunciation, the corresponding ONC sequence
is generated from the model. Then syllable boundaries are
placed at the location starting with symbol “O” or “N” if it is
not preceded with symbol “O”.

Figure 1. Diagram of the syllable structure grammar.

3 Data-driven syllabification

3.1 Neural network-based syllabification

The basic neural network-based ONC model is a standard
multi-layer perceptron (MLP), as seen in Figure 2. Phonemes
are presented to the MLP network one at a time in a sequential
manner. The network gives estimates of ONC posterior
probabilities for each presented phoneme. In order to take the
phoneme context into account, a number of phonemes on each
side of the phoneme in question are also used as inputs to the
network. Thus, a window of phonemes is presented to the
neural network as input. Figure 2 shows a typical MLP with a
context size of w phonemes phi-w…phi+w centered at phoneme
phi. The centermost phoneme phi is the phoneme that
corresponds to the output of the network. Therefore the output
of the MLP is the estimated ONC probability P(onck|phi-

w,…,phi+w) ({ }CNOonck ,,∈) for the centermost phoneme
phi in the given context pi-w…pi+w. A phonemic null is defined
in the phoneme set and is used for representing phonemes to
the left of the first phoneme and to the right of the last
phoneme in a pronunciation.

o u t p u t l a y e r

h i d d e n la y e r

in p u t l a y e r

P (o n c 1 |p h i- w , . . . , p h i+ w) P (o n c 3 |p h i- w , . . . , p h i+ w)

c o d e v e c t o r s o f i n p u t l e t t e r s

p h i- w p h i p h i+ w

Figure 2. Two-layer neural network architecture.

The ONC neural network is a fully connected MLP,
which uses a hyperbolic tangent sigmoid shaped function in
the hidden layer and a softmax normalization function in the
output layer. The softmax normalization ensures that the
network outputs are in the range [0,1] and sum up to unity.

∑
=

= 3

1j

y

y

i
j

i

e

eP . (1)

In Equation (1), yi and Pi denote the ith output value before
and after softmax normalization. It has been shown in [6] that
a neural network with softmax normalization will
approximate class posterior probabilities when trained for
one-out-of-N classification and when the network is
sufficiently complex and trained to a global minimum. Since
the neural network input units are continuous valued, the
phonemes in the input window need to be transformed to
some numeric quantity. An example of an orthogonal
codebook representing an alphabet used for ONC mapping
task is shown in Table 1. The last row in the table is the code
for the phonemic null. The orthogonal code has an equal size
to the number of phonemes in the alphabet. An important

Word:
text

 [Syllable]

Nucleus Onset Coda

 /t/ /eh/ /k/ /s/ /t/

property of the orthogonal coding scheme is that it does not
introduce any correlation between different letters.

The ONC neural network is trained by the standard back-
propagation (BP) algorithm augmented by a momentum term.
Each phoneme with context and the corresponding ONC tag
of the pronunciation make up one training example. Weights
are updated in a stochastic on-line fashion. Before testing the
models, all parameters are rounded off to eight bits as this was
found sufficient for representing model parameters without a
significant loss in accuracy. The number of parameters in the
models therefore equals the required memory for storage in
bytes.

Table 1. Orthogonal phoneme coding scheme.

Letter Code
aa 100...0000
ae 010...0000
... ...
B 000...1000
P 000...0100
T 000...0010
000...0001

The outputs of the ONC neural network approximate the

ONC posterior probabilities corresponding to the centermost
phoneme. The ONC sequence of a pronunciation is obtained
by combining the network outputs for each individual
phoneme in the pronunciation. Given a pronunciation with
phonemic representation, the ONC tag of phoneme phi is
given by

{ }),...,|(argmax wiwik
onc

phphoncPonc
k

+−= , (2)

where),...,|(wiwik phphoncP +− is the network output
corresponding to onck given input phonemes phi-w…phi+w, and
variable w denotes the phoneme window context size,
respectively. Variable onc takes value from set of [O N C].

3.2 Decision tree-based syllabification

Contrary to the neural network approach, a separate decision
tree is trained for each of the different phonemes. The ONC
tag for a phoneme is obtained by “asking” a series of questions
about the context of the phoneme in question as defined by the
corresponding decision tree. A decision tree is composed of a
root node, internal nodes and leaves. In the trees used here, the
context is defined by the neighboring phonemes. Each node
contains information about the attribute and ONC identity.

In the decoding phase, a ONC tag sequence is generated
by going through the pronunciation phoneme by phoneme
from left to right. The decision tree corresponding to the
current phoneme is climbed based on the context information
until a leaf is reached. The ONC tag that corresponds to the
current phoneme is read from the leaf. Then the process
moves on to the next phoneme and the ONC tag for this
phoneme is found in a similar way.

When a decision tree is trained for a given phoneme, all
the training cases for the phoneme are considered. A training
case for the phoneme is composed of the phoneme context
and the corresponding ONC tag of the pronunciation. During

training, the decision tree is grown and the nodes of the
decision tree are split into child nodes according to an
information theoretic optimization criterion. Details about
decision tree training can be found in [7][8].

3.3 Self-correction algorithm

Syllabification from an ONC sequence can be obtained by
writing a very simple declarative grammar to decode the
locations of syllable boundaries in polysyllabic
pronunciations. The grammar describes that each
pronunciation consists of one or more syllables of the structure
ONC, i.e., of an obligatory syllable nucleus (N) optionally
preceded or followed, or both, by any number of consonants
(O or C). The self-correction algorithm is triggered by finding
invalid pattern /O C/ from the ONC string. If found, certain
linguistic rules are applied, such as,
(1). By assigning a higher cost to the last consonant of each
syllable, we can enforce the syllable boundary to be placed as
early as possible, thereby implementing the well-known
maximal onset principle.
(2). It is also assumed that error in the ONC sequence is
minimized.
(3). In English, the onset can contains up to three phonemes
and coda up to four. This rule can also be implemented into the
algorithm.

The more detailed linguistic rules we have, the better
performance we can expect from the algorithm. The self-
correction algorithm is summarized in Figure 3.

1. Read ONC string mapped from a pronunciation
2. if ONC string matches invalid pattern /O C/, goto 3
 else goto 4
3 Applying rules 1, 2, 3 to decide mapping eigher /O C/->/C
C/ or /O C/->/O O/, goto 4,
4. if corrected ONC string matches invalid pattern, goto 3,
else output the corrected ONC string.

Figure 3. The self-correction algorithm.

4 Experimental results

4.1 Setup

The neural network- and decision tree-based syllabification
methods are evaluated on the CMU dictionary for US English.
The dictionary contains 108,080 words with pronunciation and
labels with ONC information. The pronunciation and mapped
ONC sequence part of the dictionary are extracted to form the
training data. The whole dictionary is further arbitrarily split
into independent training and test sets without overlapping.
The dictionary contains generic words as well as a few proper
names. With preliminary experiments a suitable context length
of 2 phonemes was chosen. Therefore both the neural network
and decision tree methods use a context of 2 phonemes to the
left and right of the centermost phoneme.

4.2 Generalization capability of NN

In practice, only a small amount of training data can be easily
obtained by manual annotation. Since the data-driven
approaches require such training data, so it would be very
beneficial if model trained on the small training data can be

used on the large database with acceptable loss of accuracy.
Figure 4 shows the correct string rate of neural network-based
pronunciation-to-ONC mapping on the test set with different
training set. The neural network uses five hidden units and
three output units. The number of inputs is 200 corresponding
to a 5-phoneme input window and 40 different phonemes
(including the phonemic null). With 8-bit precision for the
network weights this corresponds to a memory requirement of
about 1,035 Bytes. It can be seen that neural network method
leads to a quick saturation in performance as a amount of train
data increases. Very good performance on the test set can be
obtained with a small amount of train data, e.g. about 2000
samples leading to >99% string rate. For the training data, the
string rates are 100% for all tested cases.

0 1 2 3 4 5 6

x 10
4

95.5

96

96.5

97

97.5

98

98.5

99

99.5

100

Number of training samples

St
rin

g
ra

te
 o

f t
es

t s
et

 in
 p

er
ce

nt
ag

e

pronunciation vs. ONC mapping performance

Figure 4. Neural network performance of pronunciation vs.
ONC sequence mapping.

4.3 Comparison between NN and DT

The generalization capability is first compared between the
NN- and DT-based methods. As show in Section 4.2, the
performance of NN-based method is saturated with a training
set of about 2000 samples. Thus training process has taken
2000 samples into use for both NN and DT models.

Table 2. Performance comparison between NN and DT.

 String Rate:
training set

String Rate:
Test set

Model Size

NN 100% 99.33% 1035 Bytes
DT 100% 97.86% 4407 Bytes

Table 2 clearly indicates that NN method outperforms DT
method in all comparison including model size and
generalization capabilities. It should be noted that DT model
size is obtained by using optimization mentioned in [8].

4.4 Evaluation of self-correction algorithm

The self-correction algorithm is developed to automatically
correct the ONC sequence containing invalid pattern to make
detection of syllable boundaries possible. The NN models are
trained on the data with different number of samples. The
experiments are carried out on the remaining test set. Among
the invalid errors, Figure 5 shows the number of errors that
have been corrected. The dashed line stands for the perfect
correction and solid line indicates the excellent performance of
the self-correction algorithm. The corrected rate (equivalent to

the slope of fitted solid line) is 89.1% in average. 20% of total
errors are invalid errors, so the algorithm improves about 20%
of the syllabification rate.

0 100 200 300 400 500 600 700 800
0

100

200

300

400

500

600

700

800

Number of invalid errors

N
um

be
r o

f s
el

f−
co

rr
ec

te
d

er
ro

rs

Performance of self−correction algorithm

Figure 5. Performance of self-correction algorithm.

5 Conclusions
The syllabification is an important problem in automatic
speech recognition and speech synthesis applications. In this
paper we have compared NN- and DT-based methods. Our
results show that NN provides clearly better overall
performance and smaller model size compared to DT.
Especially the generalization performance of NN is superior to
that of the DT. A self-correction algorithm has also been
presented and proven to be useful in eliminate the effects of
linguistically invalid ONC patterns.

6 References
[1] Sproat, R., Multilingual Text-to-Speech Synthesis: The

Bell Labs Approach. Kluwer, Dordrecht, 1998.
[2] Kahn, D., Syllable-Based Generalizations in English

Phonology, Doctoral Dissertation, Massachusetts Institute
of Technology, USA, 1976.

[3] Müller, K., “Automatic Detection of Syllable Boundaries
Combining the Advantages of Treebank and Bracketed
Corpora Training”, in Proceedings of the 39th Annual
Meeting of the Association for Computational Linguistics,
Toulouse, France, 2001.

[4] Daelemans, W. and van den Bosch, A. "Generalization
performance of backpropagation learning on a
syllabification task", in Proceedings of Twente Workshop
on Language Technology 3: Connectionism and Natural
Language Processing, Twente, The Netherlands, 1992.

[5] Kiraz, G. A., and Möbius, B., "Multilingual
Syllabification Using Weighted Finite-State
Transducers", in Proceedings of the 3rd ISCA Speech
Synthesis Workshop, Australia, 1998.

[6] Bishop, C., Neural Networks for Pattern Recognition,
Oxford University Press, Oxford, UK, 1995.

[7] Quinlan, J., C4.5: Programs for Machine Learning,
Morgan Kaufmann Publishers Inc., San Mateo, CA, 1993.

[8] Suontausta, J. and Tian, J., “Low memory decision tree
method for text-to-phoneme mapping”, in Proceedings of
IEEE Automatic Speech Recognition and Understanding
Workshop, U.S. Virgin Islands, 2003.

