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Abstract 
Syllabification is an essential component of many speech and 
language processing systems. The development of automatic 
speech recognizers frequently requires working with subword 
units such as syllables. More importantly, syllabification is an 
inevitable part of speech synthesis system. In this paper we 
present data-driven approaches to supervised learning and 
automatic detection of syllable boundaries. The generalization 
capability of the learning is investigated on the assignment of 
syllable boundaries to phoneme sequence representation in 
English. A rule-based self-correction algorithm is also 
proposed to automatically correct some syllabification errors. 
We conducted a series of experiments and the neural network 
approach is clearly better in terms of generalization 
performance and complexity. 

1 Introduction 
The development of speech synthesizers and speech 
recognizers often requires working with subword units such as 
syllables. For instance, robust speech recognition often makes 
use of word spotters based on syllables for detecting out-of-
vocabulary speech and for modeling unknown words in 
spontaneous speech. Syllabification plays a key role in any 
text-to-speech (TTS) system [1]. In many languages the 
pronunciation of phonemes is a function of their location in the 
syllable relative to the syllable boundaries. Location in the 
syllable also has a strong effect on the duration of the phone, 
and is therefore a crucial piece of information for any model of 
segmental duration. Syllable is also used to assign the 
strong/weak stress on the word, e.g. the English noun Insult vs. 
the related verb inSULT. 

The system being developed requires study on the 
algorithm for dividing words into syllables, due to the fact that 
a commonly accepted algorithm shared among the linguistic 
community does not exist. In the linguistic literature, we can 
find grammatical rules or attempts to explain the division of 
words into syllables [2]; it usually requires comprehensive 
linguistic knowledge. Probabilistic context-free grammar 
(PCFG) was proposed in [3], but the performance seems 
having a room for improvement. It also requires a larger 
training database to get statistical information. The neural 
network applied to the assignment of syllable boundaries to 
orthographic representation was also presented in [4]. 
Precisely it hyphens the word, rather than syllabification in the 
phoneme sequence. Since the phoneme sequence, rather than 
orthographic representation, contains more information to 
extract spoken syllables, the reported performance is limited. 
In recent years finite-state transducers (FSTs) have become 

increasingly popular as a flexible and mathematically elegant 
computational model for the conversion and mapping between 
symbol strings, most notably in the domains of phonology and 
morphology [1]. Paper [5] presents a finite-state model for 
syllabification. The syllabifier is implemented as a weighted 
finite-state transducer. The transducer is constructed by 
obtaining syllables as well as their structure and frequencies 
from a training database. Observed frequencies of onset, 
nucleus and coda types are converted into weights, which are 
then associated with the pertinent transitions between states in 
the transducer. It requires a large training database and 
generalization capability for unseen data is not studied. 

In this paper, we investigate data-driven approaches for 
modeling syllabification. Decision tree- and neural network-
based approaches are compared and evaluated. The study is 
mainly focused on the generalization capability of the learning. 
It is aiming to train a robust model that can be used for various 
types of data. Then it is feasible in practice to label small 
amount of training data without profound linguistic 
knowledge. With the help of general rules, the self-correction 
algorithm is introduced. Our results indicate that a suitable 
neural network provides clearly better overall performance and 
smaller model size than decision trees. Particularly, the 
generalization performance of neural networks is superior. 

The remainder of the paper is organized as follows. We 
first describe how to structure syllables in Section 2. After 
that, we briefly review both the decision tree- and the neural 
network-based methods. The self-correction algorithm is also 
introduced in Section 3. The performance of the proposed 
approaches is evaluated in terms of generalization capability, 
complexity and syllabification accuracy in Section 4, with 
concluding remarks in Section 5. 

2 Syllable structure 
A syllable is a basic unit of word studied on both the phonetic 
and phonological levels of analysis. It is typically composed of 
more than one phoneme. No matter how easy it can be for 
people and even for children to count the number of syllables 
in a sequence in their native language, still there are no 
universally agreed upon phonetic definitions of what a syllable 
is. It is phonologically believed that syllable is a complex unit 
made up of nuclear and marginal elements. Nuclear elements 
are the vowels or syllabic segments, and marginal elements are 
the consonants or non-syllabic segments. Standard dictionaries 
provide syllabification that is influenced by the morphological 
structure of words; it is common in such dictionaries to split 
prefixes and suffixes from stems. For instance, some 
dictionaries syllabify the word glamour as [g l ae m – er], 
whereas the more plausible syllabification in speech is [g l ae - 



m er]. Our output produces the latter and hence is more 
faithful to spoken syllables. Syllabification ought to represent 
the properties of spoken utterances, rather than morphological 
structure, particularly true for ASR and TTS systems. 

A syllable can be described by a series of grammars [3]. 
The simplest grammar is the phoneme grammar, where a 
syllable is tagged with the corresponding phoneme sequence. 
The consonant-vowel grammar describes a syllable as a 
consonant-vowel-consonant (CVC) sequence. The syllable 
structure grammar divides a syllable into onset, nucleus and 
coda (ONC) as shown in Figure 1. The nucleus is obligatory 
which can be either a vowel or a diphtong. An onset is the first 
part of a syllable consisting of consonants and ending to the 
nucleus of the syllable. e.g. /t/ is the onset of the syllable [t eh 
k s t]. A nucleus is the vowel part of a syllable, e.g. /eh/ in the 
syllable. A coda is the part of a syllable that follows the 
nucleus. A coda is constructed of consonants, e.g. /k s t/ in the 
syllable. The nucleus and coda are combined to form the 
rhyme of a syllable. A syllable has a rhyme, even if it doesn't 
have a coda. 

In the syllable structure grammar, the consonants are 
assigned as onset or coda. It contains more information than 
the CVC structure for multi-syllable words. The syllable 
structure grammar is used throughout the paper. The phoneme 
sequence is mapped into its ONC representation. The model is 
trained on the mapping. In the decoding phase, given a 
phoneme sequence, the ONC sequence is first generated, and 
then the syllable boundaries are uniquely decided on the ONC 
sequence. For invalid ONC sequences, a self-correction 
algorithm is applied to solve the problem by utilizing certain 
common linguistic rules. Now, the syllabification task is 
divided into the following steps. 
1. The pronunciation phoneme string is mapped to ONC 

string, for example: 
(word) text -> (pronunciation) t eh k s t -> (ONC) O N C C C 
2. Training on the data in the format of “pronunciation -> 

ONC” 
3. Given the pronunciation, the corresponding ONC sequence 
is generated from the model. Then syllable boundaries are 
placed at the location starting with symbol “O” or “N” if it is 
not preceded with symbol “O”. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1. Diagram of the syllable structure grammar. 

3 Data-driven syllabification 

3.1 Neural network-based syllabification 

The basic neural network-based ONC model is a standard 
multi-layer perceptron (MLP), as seen in Figure 2. Phonemes 
are presented to the MLP network one at a time in a sequential 
manner. The network gives estimates of ONC posterior 
probabilities for each presented phoneme. In order to take the 
phoneme context into account, a number of phonemes on each 
side of the phoneme in question are also used as inputs to the 
network. Thus, a window of phonemes is presented to the 
neural network as input. Figure 2 shows a typical MLP with a 
context size of w phonemes phi-w…phi+w centered at phoneme 
phi. The centermost phoneme phi is the phoneme that 
corresponds to the output of the network. Therefore the output 
of the MLP is the estimated ONC probability P(onck|phi-

w,…,phi+w) ( { }CNOonck ,,∈ ) for the centermost phoneme 
phi in the given context pi-w…pi+w. A phonemic null is defined 
in the phoneme set and is used for representing phonemes to 
the left of the first phoneme and to the right of the last 
phoneme in a pronunciation. 
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Figure 2. Two-layer neural network architecture. 

The ONC neural network is a fully connected MLP, 
which uses a hyperbolic tangent sigmoid shaped function in 
the hidden layer and a softmax normalization function in the 
output layer. The softmax normalization ensures that the 
network outputs are in the range [0,1] and sum up to unity. 
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In Equation (1), yi and Pi denote the ith output value before 
and after softmax normalization. It has been shown in [6] that 
a neural network with softmax normalization will 
approximate class posterior probabilities when trained for 
one-out-of-N classification and when the network is 
sufficiently complex and trained to a global minimum. Since 
the neural network input units are continuous valued, the 
phonemes in the input window need to be transformed to 
some numeric quantity. An example of an orthogonal 
codebook representing an alphabet used for ONC mapping 
task is shown in Table 1. The last row in the table is the code 
for the phonemic null. The orthogonal code has an equal size 
to the number of phonemes in the alphabet. An important 

Word: 
text  

   [Syllable] 

Nucleus Onset Coda 

   /t/   /eh/ /k/   /s/    /t/ 



property of the orthogonal coding scheme is that it does not 
introduce any correlation between different letters. 

The ONC neural network is trained by the standard back-
propagation (BP) algorithm augmented by a momentum term. 
Each phoneme with context and the corresponding ONC tag 
of the pronunciation make up one training example. Weights 
are updated in a stochastic on-line fashion. Before testing the 
models, all parameters are rounded off to eight bits as this was 
found sufficient for representing model parameters without a 
significant loss in accuracy. The number of parameters in the 
models therefore equals the required memory for storage in 
bytes. 

Table 1. Orthogonal phoneme coding scheme. 

Letter Code 
aa 100...0000 
ae 010...0000 
... ... 
B 000...1000 
P 000...0100 
T 000...0010 
# 000...0001 

 
The outputs of the ONC neural network approximate the 

ONC posterior probabilities corresponding to the centermost 
phoneme. The ONC sequence of a pronunciation is obtained 
by combining the network outputs for each individual 
phoneme in the pronunciation. Given a pronunciation with 
phonemic representation, the ONC tag of phoneme phi is 
given by 

{ }),...,|(argmax wiwik
onc

phphoncPonc
k

+−= ,  (2) 

where ),...,|( wiwik phphoncP +−  is the network output 
corresponding to onck given input phonemes phi-w…phi+w, and 
variable w denotes the phoneme window context size, 
respectively. Variable onc takes value from set of [O N C]. 

3.2 Decision tree-based syllabification 

Contrary to the neural network approach, a separate decision 
tree is trained for each of the different phonemes. The ONC 
tag for a phoneme is obtained by “asking” a series of questions 
about the context of the phoneme in question as defined by the 
corresponding decision tree. A decision tree is composed of a 
root node, internal nodes and leaves. In the trees used here, the 
context is defined by the neighboring phonemes. Each node 
contains information about the attribute and ONC identity. 

In the decoding phase, a ONC tag sequence is generated 
by going through the pronunciation phoneme by phoneme 
from left to right. The decision tree corresponding to the 
current phoneme is climbed based on the context information 
until a leaf is reached. The ONC tag that corresponds to the 
current phoneme is read from the leaf. Then the process 
moves on to the next phoneme and the ONC tag for this 
phoneme is found in a similar way. 

When a decision tree is trained for a given phoneme, all 
the training cases for the phoneme are considered. A training 
case for the phoneme is composed of the phoneme context 
and the corresponding ONC tag of the pronunciation. During 

training, the decision tree is grown and the nodes of the 
decision tree are split into child nodes according to an 
information theoretic optimization criterion. Details about 
decision tree training can be found  in [7][8]. 

3.3 Self-correction algorithm 

Syllabification from an ONC sequence can be obtained by 
writing a very simple declarative grammar to decode the 
locations of syllable boundaries in polysyllabic 
pronunciations. The grammar describes that each 
pronunciation consists of one or more syllables of the structure 
ONC, i.e., of an obligatory syllable nucleus (N) optionally 
preceded or followed, or both, by any number of consonants 
(O or C). The self-correction algorithm is triggered by finding 
invalid pattern /O C/ from the ONC string. If found, certain 
linguistic rules are applied, such as, 
(1). By assigning a higher cost to the last consonant of each 
syllable, we can enforce the syllable boundary to be placed as 
early as possible, thereby implementing the well-known 
maximal onset principle. 
(2). It is also assumed that error in the ONC sequence is 
minimized. 
(3). In English, the onset can contains up to three phonemes 
and coda up to four. This rule can also be implemented into the 
algorithm. 

The more detailed linguistic rules we have, the better 
performance we can expect from the algorithm. The self-
correction algorithm is summarized in Figure 3. 
 
1. Read ONC string mapped from a pronunciation 
2. if ONC string matches invalid pattern /O C/, goto 3 
    else goto 4 
3 Applying rules 1, 2, 3 to decide mapping eigher /O C/->/C 
C/ or /O C/->/O O/, goto 4, 
4. if corrected ONC string matches invalid pattern, goto 3, 
else output the corrected ONC string. 

Figure 3. The self-correction algorithm. 

4 Experimental results 

4.1 Setup 

The neural network- and decision tree-based syllabification 
methods are evaluated on the CMU dictionary for US English. 
The dictionary contains 108,080 words with pronunciation and 
labels with ONC information. The pronunciation and mapped 
ONC sequence part of the dictionary are extracted to form the 
training data. The whole dictionary is further arbitrarily split 
into independent training and test sets without overlapping. 
The dictionary contains generic words as well as a few proper 
names. With preliminary experiments a suitable context length 
of 2 phonemes was chosen. Therefore both the neural network 
and decision tree methods use a context of 2 phonemes to the 
left and right of the centermost phoneme. 

4.2 Generalization capability of NN 

In practice, only a small amount of training data can be easily 
obtained by manual annotation. Since the data-driven 
approaches require such training data, so it would be very 
beneficial if model trained on the small training data can be 



used on the large database with acceptable loss of accuracy. 
Figure 4 shows the correct string rate of neural network-based 
pronunciation-to-ONC mapping on the test set with different 
training set. The neural network uses five hidden units and 
three output units. The number of inputs is 200 corresponding 
to a 5-phoneme input window and 40 different phonemes 
(including the phonemic null). With 8-bit precision for the 
network weights this corresponds to a memory requirement of 
about 1,035 Bytes. It can be seen that neural network method 
leads to a quick saturation in performance as a amount of train 
data increases. Very good performance on the test set can be 
obtained with a small amount of train data, e.g. about 2000 
samples leading to >99% string rate. For the training data, the 
string rates are 100% for all tested cases. 
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Figure 4. Neural network performance of pronunciation vs. 
ONC sequence mapping. 
 

4.3 Comparison between NN and DT 

The generalization capability is first compared between the 
NN- and DT-based methods. As show in Section 4.2, the 
performance of NN-based method is saturated with a training 
set of about 2000 samples. Thus training process has taken 
2000 samples into use for both NN and DT models. 

Table 2. Performance comparison between NN and DT. 

 String Rate: 
training set 

String Rate: 
Test set 

Model Size 

NN 100% 99.33% 1035 Bytes 
DT 100% 97.86% 4407 Bytes 

 

Table 2 clearly indicates that NN method outperforms DT 
method in all comparison including model size and 
generalization capabilities. It should be noted that DT model 
size is obtained by using optimization mentioned in [8]. 

4.4 Evaluation of self-correction algorithm 

The self-correction algorithm is developed to automatically 
correct the ONC sequence containing invalid pattern to make 
detection of syllable boundaries possible. The NN models are 
trained on the data with different number of samples. The 
experiments are carried out on the remaining test set. Among 
the invalid errors, Figure 5 shows the number of errors that 
have been corrected. The dashed line stands for the perfect 
correction and solid line indicates the excellent performance of 
the self-correction algorithm. The corrected rate (equivalent to 

the slope of fitted solid line) is 89.1% in average. 20% of total 
errors are invalid errors, so the algorithm improves about 20% 
of the syllabification rate. 
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Figure 5. Performance of self-correction algorithm. 

5 Conclusions 
The syllabification is an important problem in automatic 
speech recognition and speech synthesis applications. In this 
paper we have compared NN- and DT-based methods. Our 
results show that NN provides clearly better overall 
performance and smaller model size compared to DT. 
Especially the generalization performance of NN is superior to 
that of the DT. A self-correction algorithm has also been 
presented and proven to be useful in eliminate the effects of 
linguistically invalid ONC patterns. 
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