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ABSTRACT 

 
In this paper we show that time-frequency averaging of 
noise compensation filters, estimated using well-known 
techniques such as spectral subtraction, Wiener filtering 
and Ephraim-Malah approach, improves the performance 
of automatic speech recognition system in non-stationary 
noisy environments. The experiments were conducted on 
a multilingual isolated word recognition task in signal to 
noise ratio ranging from 5dB to 20dB and clean 
conditions. 

1. INTRODUCTION 
Susceptibility of automatic speech recognizers to 

environmental noise is a hindrance to their widespread 
usage in voice interfaces. In the case of mobile devices, 
depending on the ambience of the user, the noise could be 
background sounds like traffic noise, background speech 
or music. In all cases we deal with a difficult situation 
where only the noisy signal is available. No additional 
signal, for e.g. a second microphone to measure the 
ambient noise, is available to improve the quality of the 
corrupted signal. 

 Although there are various schemes for 
improving the Signal to Noise Ratio (SNR) of noisy 
speech, only a few offer both acceptable performance for 
real world noises and low complexity to be implemented 
on a mobile device. Among them are subtractive methods 
based on spectral subtraction and Wiener filtering [1][2]. 
However, all single channel subtractive-type algorithms 
are characterized by a tradeoff between the amount of 
noise reduction, the speech distortion, and the level of 
musical residual noise, which can be modified by varying 
the subtraction parameters. Algorithms are usually limited 
to the use of fixed optimized parameters, which are 
difficult to choose for all speech and noise conditions. 
Various methods have been proposed to reduce this effect: 
magnitude averaging [1], over-subtraction of noise and 
introduction of noise floor [3], soft-decision noise 
suppression filtering [4], optimal MMSE estimation of 
short-time spectral amplitude [5], nonlinear spectral 
subtraction [6] and applying properties of human auditory 
system [7]. 

Main cause of residual noise and distortion of 
estimated clean speech is the error in estimating various 

parameters in the noise suppression filter. The algorithm 
presented here addresses these issues through a simple 
time-frequency averaging of the subtractive filter. This 
paper is organized as follows. In Section 2, the principles 
of subtractive noise suppression algorithms and the 
proposed time-frequency averaging are described. In 
Section 3, experimental results are presented. 

2. ALGORITHM DESCRIPTION 
Consider a single channel system corrupted by 

additive background stationary noise. The noisy speech 
can be expressed as: 

)()()( nnnsnx +=  
where )(ns is the original speech signal and )(nn  is 

the additive noise. Speech and noise are assumed to be 
uncorrelated. The processing is done on a frame-by-frame 
basis in the frequency domain. It is mainly composed of 
two phases: calculations of the smoothed subtractive filter 
and noise subtraction. Figure 1 shows a block diagram of 
the noise suppression scheme. Each of the blocks in the 
figure are explained in subsequent subsections. 

Figure 1. Block diagram of the noise suppression scheme 

2.1. Spectral Amplitude Estimation 
The clean speech magnitude spectrum is estimated 

using a time-varying linear filter dependent on the noisy 
signal spectrum and on the estimated noise spectrum [3]. 

),(),(),(ˆ nkXnkHnkS ∗=             (1) 

The filter gain, ),( nkH , can be estimated using many 

well-known techniques, such as spectral subtraction, 
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Wiener filter and Ephraim-Malah’s MMSE approach. We 
use Wiener filter approach. The gain function is computed 
according to the following equation: 
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where, ),( nkX  is the kth spectral component of frame 

number n computed using Short Term Fourier Transform 
(STFT) of the noisy speech and ),(ˆ nkN  is the smoothed 

spectral component of noise signal. ),(ˆ nkN  is given by 
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),(ˆ nkN  is updated only during speech pauses detected 

by a Voice Activity Detector (VAD). The scaling factor, 
β , of noise floor is set to 0.001 and the forgetting factor, 
α , for noise spectrum update is set to 0.99. Noise floor is 
introduced to limit the effect of residual noise at the 
expense of increased background noise. During the first 
15 frames ),(ˆ nkN  is computed as the running average of 

noisy signal spectrum ),( nkX . 
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Figure 2(a) shows a speech waveform in background 
speech noise at 5dB SNR. In order to visualize the effect 
of the filtering scheme, a typical power spectrum of a 
noisy signal and filter transfer function are shown in 
Figure 2 (b) and Figure 2(c). Figure 2 (e) shows the 
estimated clean power spectrum in Equation (1). It can be 
clearly seen that the estimated clean power spectrum 

),(ˆ nkS has little residual noise but some of the speech 

energy is also suppressed. This is due to the errors in the 
estimation of filter gain. In non-stationary noisy 
environments it is hard to keep track of the noise spectrum 
changes.  For speech enhancement purposes minimizing 
residual noise at the expense of attenuation of speech 
portions maybe desirable. For ASR it is crucial to 
minimize the distortion in speech regions. There are 
various methods to minimize this. In the next section we 
present a simple solution. 
2.2. Time-frequency averaging 

The magnitude averaging solution presented in [1] has 
an inherent problem that the speech is nonstationary, and 
therefore the span of the averaging filter is limited. A 
weighted average of several frames is adopted in [8]. 
More recently, 2-D transforms have been used to capture 
the correlation [9]. It is clear that there is gain exploiting 
the correlation between adjacent frames. In this work we 
average the estimated filter in both time and frequency. A 

similar approach is presented in [10]. First the filter in 
Equation (2) is time averaged to obtain a new filter as 
given in the following Equation. 

222 ),()1()1,(),( nkHnkHnkH filtertsfilterts ∗−+−∗= αα        (5) 

Next, the time-averaged filter is smoothed in 
frequency with a rectangular window. 

∑
=

−=

+
+∗

=
Ll

Ll
tstfs nlkH

L
nkH 22

),(
12

1),(       (6) 

The time and frequency averaged filter is applied to 
the power spectrum of the noisy signal in Equation (1) to 
obtain an estimate of the clean power spectrum. Figure 
2(d) and Figure 2(f) show the filter gain and the estimated 
clean power spectrum. It can be observed that the 
resulting clean power spectral estimate has a lot more 
background noise in it than the estimate without averaging 
(Figure 2(e)), but the speech regions are well preserved in 
the new approach. 
2.3. Cepstral normalisation 

Mel-frequency cepstral coefficients (MFCC) are 
computed from the estimated clean magnitude spectrum. 
First and second derivatives are calculated from the static 
coefficients. They are then mean and variance normalized 
according to the following equation. 
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where, )(nci  is the ith cepstral feature at frame n, 

)(nmi  and 2)(niσ  are the mean and the variance of the 

ith cepstral feature estimated at frame n, and )(nci′  is the 
normalized cepstral feature at frame n. The value of bias 
λ  is fixed at 1.0. All the cepstral features are normalized. 
The bias is introduced to smooth small estimates of 
variance. 

3. EXPERIMENTAL RESULTS 
The algorithms were tested on a multilingual small 

vocabulary isolated word recognition task. Test set 
comprises of approximately 40,000 words from seven 
European languages: Finnish, Swedish, German, English, 
Danish, Icelandic and Norwegian. The size of vocabulary 
per language was approximately 120. 

The baseline front-end used in the experiments was 
based on 13 FFT-derived Mel-frequency cepstral 
coefficients (MFCC) and their first and second order 
derivatives (39 coefficients in total). Recursive mean 
removal was applied on all components of the resulting 
feature vectors, and the variance of only 0c  and its 
derivatives are normalized to unity [11]. 

The baseline acoustic model sets consists of 3 state 
monophone models with 8 Gaussian densities per state. 
The model sets were trained on an in-house training set 
containing clean speech data from various European 



languages. Both sets contained a total of 75 multilingual 
phone models that were used to model the basic acoustic 
units of the seven European languages mentioned above.  

The Word Error Rates (WER) of Wiener filter based 
front-end with time-frequency averaging are tabulated in 
Table 1. Noise is artificially added to the clean utterances 
at Signal to Noise Ratios (SNR) ranging from 5dB to 
20dB in steps of 5dB. The noise waveform is created by 
concatenating car noise, background speech and music. 
The noise segment to be added to the clean speech 
utterance and the SNR is randomly selected. This makes it 
difficult to tune the performance of the front-end to a 
particular noise condition. 

WER (%)  
Clean Noisy 

Baseline 3.49 12.53 
Wiener filter (no averaging) 3.46 11.17 
Wiener filter (time averaging) 3.51 10.89 
Wiener filter (frequency 
averaging) 

3.49 10.76 

Wiener filter (time-frequency 
averaging) 

3.58 10.22 

Table 1. Performances of Wiener filter with time and 
frequency averaging. 

It can be observed that the frequency averaging 
provides more gain than time averaging alone. The 
combined approach is the best combination. Further, we 
examine an alternative to rectangular window for 
frequency smoothing. Table 2 lists the performance, in 
noise only, using a triangular window for frequency 
averaging. We also examined the application of Wiener 
filter in the Mel-frequency domain. But none of these 
approaches perform as well as the rectangular window 
based averaging. We compared our approach with two 
other smoothing based noise robust front-ends, namely, 
ETSI Advanced front-end standard [12]  and J-RASTA 
processing [13]. Although the ETSI standard is better than 
the Wiener filter in Mel-frequency domain, the proposed 
approach performs the best. 

 WER (%) 
Wiener filter (freq. averaging: 
rectangular window) 

10.22 

Wiener filter (freq. averaging: 
triangular window) 

10.35 

Wiener filter in Mel-frequency 
domain 

11.24 

ETSI Advanced front-end 10.57 
RASTA (J=10-7) 12.43 

Table 2. Comparison of different frequency averaging  
methods. 

By running separate recognition tests on speech 
corrupted with stationary and nonstationary noises, we 

observe that the gain due to averaging is more pronounced 
in nonstationary noise conditions. The results are 
tabulated in Table 3. 

 WER (%) 
 No 

averaging 
Averaging 

Car noise 10.83 9.97 
Factory noise 10.89 10.01 
Back ground 
speech 

11.23 10.15 

Back ground music 11.28 10.23 

Table 3. Performance in stationary and non-stationary  
background noise. 

Finally we check the effectiveness of the averaging on 
other noise suppression schemes. From Table 4 it can be 
noted that the averaging consistently improves the 
performance. 

WER (%)  
No 

Averaging 
Averaging 

Spectral Subtraction 11.27 10.54 
Ephraim-Malah 
approach 

11.33 10.49 

Wiener filter 11.17 10.22 

Table 4. Comparison of different noise reduction  
techniques. 

 
4. CONCLUSION 

We showed that simple time-frequency averaging of noise 
suppression filter could provide significant gains in the 
performance of automatic speech recognizers under noisy 
conditions. The averaged filter is more robust to errors in 
the estimation of apriori SNR, especially in non-
stationary noisy conditions. 
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Figure 2.  Speech spectrograms. (a) Noisy waveform (5dB SNR, background speech). (b) Spectrogram of noisy speech. 
(c) Gain of initial filter. (d) Gain of time-frequency smoothed filter. (e) Estimated clean spectrogram with initial filter. (f) 
Estimated clean spectrogram with smoothed filter. 


