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ABSTRACT

This paper presents a phrase-based speech translation sys-
tem that combines phrasal lexicon, language, and acous-
tic model features in a loglinear model. Automatic speech
recognition and machine translation are coupled by using
large word lattices as the input for translation. For the first
time, all features are directly integrated into the decoding
process. The feature weights are iteratively optimized for
an objective error measure. We prove that acoustic recogni-
tion scores of the recognized words in the lattices together
with a source language model score positively and signifi-
cantly affect the translation quality. We show the advantage
of using loglinear model combination for a robust optimiza-
tion of scaling factors. We report consistent improvements
compared with translations of single best recognition out-
put on an Italian-to-English translation task. First encour-
aging results were also obtained on a large vocabulary task
of translating European parliamentary speeches.

1. INTRODUCTION

It has been shown in the past that automatic speech recog-
nition (ASR) and machine translation (MT) can be coupled
in order to directly translate spoken utterances into another
language. Here we present a framework of phrase-based
translation of ASR word lattices, in which ASR and MT
models can be effectively combined to achieve improve-
ment of translation quality.

Various approaches to speech translation have been pro-
posed and investigated in the past. [8] presents an integrated
speech translation system for tasks from the Eutrans project.
However, the experimental results were inconsistent as the
integrated speech translation performed much worse than
the serial approach on real-world data. [4] presented only
the theory of integrated speech translation, but lacked ex-
perimental results. More recently, [7] concluded that im-
provements from tighter coupling may only be observed
when ASR lattices are sparse, i.e. when there are only few

hypothesized words per spoken word in the lattice. This
would mean that a fully integrated speech translation would
not work at all. [3] presented a joint probability approach to
speech translation based on weighted finite-state transduc-
ers (WFSTs). They were able to show consistent and sig-
nificant improvements in translation quality on three differ-
ent tasks, using lattices of high density with acoustic model
scores. The translation system of [3] produced translation
hypotheses with a single score; it was stressed that the opti-
mization of a scaling factor for either the translation or the
acoustic model score is crucial for good performance. In the
approach presented in [11], loglinear models with multiple
features were used for speech translation. In contrast to our
work, the scaling factors for the feature functions were opti-
mized in a rescoring procedure on a translation word graph
that was generated using a single word based translation
system. Here, we directly integrate all models, including
phrase based and single word based lexica and recognition
features in the decoding process. Also, in [11] the authors
extract ASRN -best lists of only 100 hypotheses per utter-
ance to approximate the coupling of speech recognition and
translation; here we explore a much tighter integration us-
ing dense lattices. Finally, [1] used loglinear model combi-
nation to translateN -best lists, but was not able to achieve
improvements with confusion networks as computed from
lattices.

This paper is organized as follows. Based on the pre-
sentation of [4], Section 2 reviews the Bayes’ decision rule
for speech translation. Starting from there, we present our
phrase-based statistical translation approach in the frame-
work of loglinear modeling and minimum error training in
Section 3. Here, we translate ASR word lattices and ben-
efit from acoustic and source language model scores. Sec-
tion 4 touches on some of the practical problems that arise
when we translate word lattices. In Section 5 we present sig-
nificant improvements in quality of translation from Italian
to English when we use the acoustic and source language
model scores together with the translation model features
and optimize the model scaling factors. We then describe



the initial promising experiments with lattice translation on
a large vocabulary English-to-Spanish task.

2. BAYES’ DECISION RULE FOR SPEECH
TRANSLATION

In speech translation, we are looking for a target language
sentenceeI

1 which is the translation of a speech utterance
represented by acoustic vectorsxT

1 . In order to minimize the
number of sentence errors, we maximize the posterior prob-
ability of the target language translation given the speech
signal (see [4]). The source wordsfJ

1 are introduced as a
hidden variable:
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Note that we made the natural assumption that the speech
signal does not depend on the target sentence and approx-
imated the sum over all possible source language tran-
scriptions by the maximum.Pr(xT

1 |fJ
1 ) may be a stan-

dard acoustic model, andPr(eI
1) is the target language

model. For the translation modelPr(fJ
1 |eI

1), we introduce
an alignmentbetween a source and target sentence as the
hidden variableA:
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The hidden alignmentA represents all possible interpreta-
tions of source words by target words. It is used to estimate
phrase based and single word based lexicon models.

The derived decision rule does not include a source lan-
guage model probabilityPr(fJ

1 ). To take into account the
requirement for the “well-formedness” of the source sen-
tencefJ

1 , the translation model has to include context de-
pendency on the previous source words [4]. In a phrase-
based translation model, this dependency is present within a
phrase. We can approximate this dependency for the whole
sentence by including a source language model in the log-
linear modeling framework that is presented in the next sec-
tion.

3. LOGLINEAR MODEL COMBINATION

In practice, we follow a direct translation approach. Here,
probability distributions are represented as features in a log-

linear model. In particular, the translation model prob-
ability is decomposed into several probabilities. We es-
timate phrase-based lexicon models using statistical word
alignments as described in [10]. The probabilities of
phrasal translations are supplemented by single word based
model probabilities. Following a unified speech transla-
tion approach, we also include acoustic model probabilities
Pr(xT

1 |fJ
1 ) of the hypotheses in the ASR word lattices as

a feature. As it was mentioned, probabilities of a source
language model can also be included.

For a hypothesized recognized source sentencefJ
1 and a

hypothesized translationeI
1, let k → (jk, ik), k = 1, . . . ,K

be amonotonesegmentation of the sentence pair intoK
bilingual phrases (without empty phrases and overlap). Our
phrase-based approach to integrated statistical speech trans-
lation is then expressed by the following equation:
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Here, we optimize over alternative recognition word se-
quencesfJ

1 , over all possible monotone segmentations of
a given recognized sequence into source language phrases,
and over all possible translations of these phrases. The fol-
lowing models contribute to the global decision criterion:

• lm(i) = p(ei | ei−1
i−m+1) is the m-gram target lan-

guage model.

• For a given phrasal segmentation(jk, ik), let
(f jk

jk−1+1, e
ik
ik−1+1), k = 1, . . . ,K be the resulting

bilingual pairs, each consisting of a source phrase
(f jk

jk−1+1) and one of its possible target phrase trans-

lations(eik
ik−1+1). Then the phrasal lexicon models in

both translation directions are given by:
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The phrase translation probabilities are computed as a
loglinear interpolation of the relative frequencies and
the IBM Model 1 probability.

• For a given phrasal segmentation, we also use the sin-
gle word based lexicon models:

swb std(k) =
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j=jk−1+1

p(fj | eik
ik−1+1)

swb inv(k) =
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The probabilityp(fj | eik
ik−1+1) is defined as the prod-

uct of the single word based lexicon probabilities
p(fj | ei) over all wordsei within the target phrase,
andp(ei | f jk

jk−1+1) is the inverse model of the same
type.

• c1 andc2 are word and phrase penalty features, re-
spectively.

• the recognition model featureasr(j) is represented
by:

asr(j) = pµ1(fj | f j−1
j−m+1) · p

µ2(xj |fj)

The probabilityp(xj |fj) is the acoustic probability of
a word hypothesisfj in the ASR word lattice which
covers the portionxj of the acoustic vectors [4]. The
probabilityp(fj | f j−1

j−m+1) is them-gram source lan-
guage model probability. Both probabilities can be
scaled with an exponent; then, the source language
model feature and the acoustic feature will get the
scaling factorsµ1 andµ2, respectively.

The translation model features and the target language
model are scaled with a set of exponentsλ = {λ1, . . . λ7}.
Their values can be optimized together with the scaling fac-
tors for the recognition model featuresµ1 andµ2 in a sin-
gle loglinear model simultaneously. The scaling factors are
optimized in a minimum error training framework [5] itera-
tively with the Downhill Simplex algorithm, by performing
100 to 200 translations of a development set. The criterion
for optimization is an objective machine translation error
measure like word error rate or BLEU score. Negative log-
arithms of the probabilities are used.

4. PRACTICAL ASPECTS OF LATTICE
TRANSLATION

4.1. Generation of Word Lattices

The speech recognition systems used here produce word lat-
tices where arcs are labeled with start and end time, the rec-
ognized entity (word, noise, hesitation, silence), the neg-
ative log probability of acoustic vectors between start and
end time given the entity. In a first step we mapped all enti-
ties that were not spoken words onto the empty arc labelε.
As the time information is not used in our approach, we
removed it from the lattices and compressed the structure
by applyingε-removal, determinization, and minimization.
For all of these operations, we employ the finite-state trans-
ducer toolkit of [2] which efficiently implemented them on-
demand. This step significantly reduced runtime without
changing the results.

4.2. Phrase Extraction

Even if we limit the maximum phrase length (e. g. to
12 words), the number of different phrase pairs which
can be extracted from a bilingual training corpus is very
large. However, for efficiency of translation, candidate
phrase pairs have to be kept in main memory. To overcome
this problem, for off-line experiments, only phrase pairs in
which the source phrase appears in the input test corpus are
extracted. In case of ASR word lattice input, we reduce
the memory requirements with the following approach. The
lattice for each test utterance is traversed, and only phrases
which match (sub)sequences of arcs in the lattice are ex-
tracted. Thus, only phrases which can be used in translation
will be loaded. In an alternative approach, a phrase pair
can be extracted only if each word in the candidate source
phrase is present in the lattice vocabulary. This vocabulary
is smaller than the ASR system vocabulary because it in-
cludes only the different words which actually appear in the
lattice. This approach has the advantage that the lattices do
not have to be searched before translation.

4.3. Pruning

A phrase-based translation system that can take a word lat-
tice of high density as input has an enormous search space
so that pruning is necessary. In our system, we apply cover-
age pruning (here, hypotheses which cover the same set of
source words are compared) and histogram pruning. These
pruning methods are based on the total costs of a hypothesis.
The absolute value of these costs depend on the scaling fac-
tors of the individual models. Since scaling factor values of
substantially different magnitude are tested during the opti-
mization, it can happen that too many or too few hypotheses
will be pruned. To avoid this, we normalize the scaling fac-
tors in each iteration of the optimization procedure so that
they sum up to 1.

It may also be necessary to prune the input word lattices.
In our experiments, we have separate scaling factors for the
acoustic and the source language model features. For this
purpose, the arcs of the word lattices are only labeled with
acoustic model scores. Then, during the translation process,
the arc weights in the recognition lattice are extended by the
scores of a source language model. Only after this operation
the resulting automaton is pruned using a relatively large
beam (pruning of the lattices based on acoustic scores only
would have resulted in suboptimal performance). Again,
the scaling factors which will be “tried” in the optimization
process have to be considered when choosing the pruning
threshold.



Table 1. Corpus statistics of the BTEC translation task.
Italian English

Train: Sentences 66 107
Running Words 410 275 427 402

Vocabulary 15 983 10 971
Singletons 6 386 3 974

Dev: Sentences 253
Running Words 1 472 1 510

Out-Of-Vocabulary rate [%] 3.1 0.8
ASR WER [%] 23.3 -

avg. lattice density 49 -
ASR graph error rate [%] 15.6 -

Test: Sentences 253
Running Words 1 459 1 513

Out-Of-Vocabulary rate [%] 2.5 0.8
ASR WER [%] 21.4 -

avg. lattice density 59 -
ASR graph error rate [%] 15.4 -

5. EXPERIMENTAL RESULTS

5.1. Corpus Statistics

The speech translation experiments were carried out on two
different tasks. Experiments for both tasks were based on
bilingual sentence-aligned corpora.

The Italian-EnglishBasic Travel Expression Corpus
(BTEC) task contains tourism-related sentences usually
found in phrase books for tourists going abroad. We were
kindly provided with this corpus by ITC-irst. Corpus statis-
tics for this task are given in Table 1. Word lattices of a 506
sentence test corpus have also been provided. The corpus
was divided in two equal parts, one of which was used as a
development set to tune model scaling factors. The lattice
density in Table 1 is defined as the number of arcs in a lat-
tice divided by the segment reference length, averaged over
all segments. It is measured after determinization and min-
imization of the original lattices. The ASR graph error rate
is the minimum WER among all paths through the lattice.
For the evaluation, 16 reference translations of the correct
transcriptions were made available.

We also tested our system on a large vocabulary
task, namely machine translation of parliamentary speeches
given in the European Parliament Plenary Sessions (EPPS).
The training corpus for this task has been collected in the
framework of the European research project TC-STAR. It
contains over 30 million words of bilingual Spanish-English
data. In March 2005, an open MT evaluation has been con-
ducted in the project. The phrase-based SMT system pre-
sented here had shown the best translation performance [9],
especially on the conditions of translating verbatim spoken
text and single best recognizer output. Here, we present

Table 2. Corpus statistics of the EPPS translation task.
English Spanish

Train: Sentences 1 652 174
Running Words 31 148 131 32 554 806

Vocabulary 80 125 124 192
Singletons 27 631 41 148

Dev Sentences 500
Running Words 6899 6446

Out-Of-Vocabulary rate [%] 0.2 0.1
ASR WER [%] 14.5 -

avg. lattice density 8 -
ASR graph error rate [%] 6.3 -

Test Sentences 792
Running Words 19 306 19 047

Out-Of-Vocabulary rate [%] 1.6 –
ASR WER [%] 14.6 -

avg. lattice density 17 -
ASR graph error rate [%] 8.7 -

experimental results for translation from English to Span-
ish. We use the same test corpus as in the 2005 TC-STAR
evaluation, for which two reference translations were made
available. However, we use the RWTH ASR output (single
best and word lattices) instead of the official evaluation data
for the ASR condition. The corpus statistics for this task
are given in Table 2. The translation vocabulary sizes are
as large as 125 thousand words. The vocabulary used for
English speech recognition is smaller – about 50 thousand
words. The held-out development corpus was selected to
have a similar ASR word error rate to the test corpus.

5.2. Evaluation Criteria

For the automatic evaluation, we used word error rate
(WER), position-independent word error rate (PER), and
the BLEU score [6]. The BLEU score measures accuracy,
i. e. larger scores are better. The error rates and scores were
computed with respect to multiple reference translations.
On both tasks, training and evaluation were performed using
the corpus and references in lowercase and without punctu-
ation marks.

5.3. BTEC Italian-English Task

On the BTEC task, we estimated and used in search a4-
gram target language model. To include the source language
model feature, in some experiments we extended each word
lattice by the scores of a trigram language model and ap-
plied moderate beam pruning to the resulting automaton, as
described in Section 4.3.

The experimental results for the BTEC development
corpus are given in Table 3. In this table, the results are



Table 3. Translation results for the BTEC Italian-to-English
task (development set). Here,λ denotes the set of scal-
ing factors for translation model features and the target lan-
guage model.

optimalλ Input/ WER PER BLEU
found on: transcription: [%] [%] [%]

correct correct text 23.7 21.3 64.3
text single best 32.2 29.0 54.7

single best 31.0 28.0 56.0
single word lattice 31.0 28.3 55.3
best + ac. score 30.3 27.5 56.6

+ LM score 30.4 27.7 56.2
ac. + LM scores 29.8 27.0 57.5

lattice opt all factors 29.2 26.3 58.7

Table 4. Translation results [%] on the BTEC test set. Com-
parison of the loglinear model approach (PBT) with the
WFST-based joint probability approach (FSA).

System: Input: WER PER BLEU

PBT single best 32.4 27.2 55.4
word lattice 31.9 28.0 54.7
ac. + LM scores 30.6 26.6 56.2
opt all factors 29.8 25.8 57.7

FSA single best 33.4 29.1 52.7
lattice + ac. scores 31.6 27.6 54.3

grouped according to the type of optimization that was done
in the loglinear model. In the first group of experiments, an
optimal set of translation parametersλ was determined on
the correct text by minimizing the word error rate. We then
use these parameters to translate single best recognizer out-
put and observe that the WER of the correct text translation
is lower than the WER of the single best ASR translation by
about 26 % relative.

However, we can also optimize the translation model
scaling factors on the single best recognizer output, taking
the parametersλ for initialization. Thus we obtained the op-
timal parameter settingsλ′ which were used to produce the
second group of results in Table 3. Here, when the recogni-
tion features are used, the translation parametersλ′ are kept
fixed, and only the scaling factors for the acoustic model
score (and, if applicable, for the source LM score) are op-
timized. In this way, we reduce the time complexity that is
necessary to optimize all factors iteratively with the Down-
hill Simplex algorithm. Overfitting of parameters may also
be avoided.

The translation quality for the single best recognition
input improves with the new parameter setλ′. The transla-
tion model seemed to adapt to recognition errors by chang-
ing the scaling factors and giving more weight to the tar-

Table 5. Examples of improvements with the integrated
speech translation approach (BTEC test set, Italian-to-
English translation).

Translation of
single best I’m very sick lost
lattice I feel much better now
reference I feel much better now

single best when should I take it ma’am
lattice when should I take it sir
reference when should I bring it sir

get language model and the inverse phrase based and single
word based lexicons. However, later we observed no sim-
ilar improvement on the test set for the single best input.
We attribute this to the fact that recognition errors may be
utterance-specific.

In the next experiment we take the word lattices with
multiple hypotheses of the recognized utterances as input,
but first do not use acoustic scores i. e. exploit only the lat-
tice topology. We observe no improvement in translation
quality. Thus, in some cases the system gets confused by
hypotheses which are easy to translate but have little in com-
mon with the spoken words. Including the acoustic scores
of the labels in the input lattice, and optimizing the scaling
factorµ2, we can achieve a significant reduction of the error
rate and improvement of the BLEU score (Table 3). A sim-
ilar improvement is achieved when we use only the source
language model score and optimize the scaling factorµ1. If
we use both recognition scores and optimizeµ1 andµ2, we
are able to combine the positive effects of the two models
and further improve the translation quality.

The best results can be achieved by optimizing the trans-
lation model scaling factorsλ and the recognition model
scaling factorsµ simultaneously. With this settings, the rel-
ative difference in WER to the translation of correct text is
reduced from 26% to less than 19%.

The results on the test set are given in Table 4. Here,
the observations are similar to the development set; the best
translation quality can be achieved by using both the acous-
tic and the source language model score, as well as optimiz-
ing all of the involved parameters of the loglinear model.
Examples of translation quality improvements are given in
Table 5. Table 4 also compares the system performance of
the loglinear model (denoted with PBT) with the joint prob-
ability based WFST system of [3] (denoted with FSA). In
that system, the translation model includes context depen-
dency for the source words, so that it is used instead of the
source language model; thus, the improvement is reached
by using word lattices with acoustic scores. Our system not
only performs better in terms of absolute error measures, but
also is able to achieve a larger relative improvement (8% vs.



Table 6. Translation results [%] on the EPPS English-to-
Spanish task.

Corpus Input WER PER BLEU

correct text 42.9 34.2 46.3
Dev single best 47.8 39.0 39.9

lattice + ASR scores 46.6 38.8 40.2

correct text 45.1 34.6 43.0
Test single best 51.0 40.1 37.4

lattice + ASR scores 51.3 40.6 36.8

5.4% in WER) with the integrated approach of word lattice
translation based on loglinear modeling.

5.4. Experiments on the EPPS Task

On the EPPS task, we used a trigram language model in
decoding. To avoid the enormous computational complex-
ity on this large vocabulary task, we applied heavy pruning.
Optimizing all of the scaling factorsλ, the source language
model factorµ1, and the acoustic model factorµ2 simul-
taneously on the development set for the WER or BLEU
score, we were able to improve all translation measures.
The best results could be achieved when optimizing for the
BLEU score (see Table 6). However, we were not able to
improve translation quality on the test set with the opti-
mized parameters. We believe that the reasons for this may
be search errors (resulting from heavy pruning) and over-
fitting. More thorough experiments are under way for this
task.

6. CONCLUSIONS

In this paper, we used ASR word lattices as input for a statis-
tical translation system. Coupling of speech recognition and
machine translation was done using loglinear model combi-
nation. By using word lattices with acoustic model scores
instead of single best recognition results, and also by in-
cluding source language model scores we were able to avoid
the negative effect of recognition errors and consistently im-
proved translation quality. We optimized the scaling factors
for the translation and recognition features in the minimum
error training framework, and integrated all the features in
the global search process, without using an approximation
of N -best translation hypotheses. To the best of our knowl-
edge, these are the first experiments, in which a state-of-the-
art, phrase-based machine translation system with multiple
features was applied to word lattice translation, and signif-
icant improvements were gained. On the large vocabulary
task of MT for the European parliamentary speeches, the
work is in progress, but first results are encouraging.
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