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Abstract
Discriminative training criteria have been shown to consistently
outperform maximum likelihood trained speech recognition
systems. In this paper we employ theMinimum Classifica-
tion Error (MCE) criterion to optimize the parameters of the
acoustic model of a large scale speech recognition system. The
statistics for both the correct and the competing model are
solely collected on word lattices without the use ofN -best lists.
Thus, particularly for long utterances, the number of sentence
alternatives taken into account is significantly larger compared
to N -best lists. The MCE criterion is embedded in an extended
unifying approach for a class of discriminative training criteria
which allows for direct comparison of the performance gain ob-
tained with the improvements of other commonly used criteria
such asMaximum Mutual Information(MMI) and Minimum
Word Error (MWE). Experiments conducted on large vocab-
ulary tasks show a consistent performance gain for MCE over
MMI. Moreover, the improvements obtained with MCE turn out
to be in the same order of magnitude as the performance gains
obtained with the MWE criterion.

1. Introduction
Due to improved optimization procedures and increased com-
putational power, discriminative methods have become an im-
portant means of estimating the parameters ofHidden Markov
Models in many state-of-the-art speech recognition systems.
Since the first successful application of theMaximum Mutual
Information (MMI) criterion to large scale speech recognition
tasks [1], there has been a growing interest in a class of error
minimizing discriminative training criteria, as for example the
Minimum Word Error (MWE) and theMinimum Phone Er-
ror (MPE) criterion [2]. In contrast to the MMI criterion, which
directly maximizes the posterior probability of the training
utterances, MWE and MPE aim at minimizing the expectation
of the word and phoneme error rate on training data. The MWE
and MPE criterion could be shown to significantly outperform
the MMI criterion on many tasks [2, 3].

Another criterion that also ranks among the class of error
minimizing criteria is theMinimum Classification Error(MCE)
criterion, which aims at minimizing a smoothed sentence error
on training data [4, 5]. Although the MCE criterion could
be shown to give consistently better results on small vocab-
ulary tasks compared to the MMI criterion [6, 7, 11], there
are only few publications that investigate the use of MCE on
large vocabulary tasks [8, 9]. One reason is that the MCE
criterion requires the exclusion of the correct class from the
set of all competing classes. In automatic speech recognition
this means that the spoken word sequence has to be removed
from the set of all possible word sequences. However, this

might be difficult if the set of competing word sequences is
encoded as a word lattice: since a lattice may contain multiple
alignments and pronunciation variants of the spoken utterance,
its constituting arcs may not uniquely be assigned to the correct
or a competing sentence without changing the structure of the
lattice. One possible remedy is the use ofN -best lists, which
was examined e.g. in [10]. Another alternative is the use of
finite state machines. Here, for each utterance a corresponding
transducer is to be built that encodes the set of competing
word sequences considered for discrimination. The spoken
word sequence can then be excluded using standard operations.
However, in general this is less efficient than directly using a
word lattice, since in the worst case the exclusion of a string
from a transducer may lead toN -best lists.

In this paper we propose a new algorithm that directly oper-
ates on word lattices without changing the lattice structure. The
use of word lattices for estimating the parameters of the acoustic
model under the MCE criterion was first presented in [11].
Though this work already contained the basic principles of the
algorithm presented here, it still requiredN -best lists in order to
find all sentence hypotheses in the word graph that correspond
with the spoken word sequence. In this paper, the statistics
that are necessary in order to train the acoustic model param-
eters under the MCE criterion are solely extracted from word
graphs without using information derived fromN -best lists.
Experiments conducted on various settings of theWall Street
Journal tasks show significant performance gains of the MCE
criterion over the MMI criterion. However, while this outcome
might have been expected based on the results of experiments
conducted on small vocabulary tasks [7, 11], it is much more
surprising that, in all settings, the improvements gained by the
MCE criterion are always in the same order of magnitude as the
improvements obtained with the MWE criterion.

2. An Extended Unifying Approach for a
Class of Discriminative Training Criteria

In [6] a unifying view for a class of discriminative training
criteria was presented that allowed for directly comparing the
performance gains obtained with the MMI and MCE criterion.
In this section this approach will be extended such that it also
comprises the MWE and MPE criterion. Letr = 1, ..., R
denote the training utterances, each consisting of a sequenceXr

of acoustic observation vectorsxr1, ..., xrTr and the corre-
sponding word sequenceWr = wr1, ..., wrNr . The emission
and the language model probability are denoted bypθ(Xr|Wr)
and p(Wr). The language model probabilities are supposed
to be given. Hence the parameterθ comprises the set of all
parameters of the acoustic model. Finally, letMr denote a set



Table 1: A class of discriminative training criteria contained in the extended unifying approach.
criterion smoothing function alternative word sequencesexponent gain function

f(z) Mr α G(W, Wr)

Maximum Likelihood z ∅ -
Maximum Mutual Information all (recognized) 1
Corrective Training

z
best (recognized) ∞

Minimum Classification Error all withoutWr free δ(W, Wr)
Falsifying Training

− 1
1 + e2%z best (recognized)6= Wr ∞

Diversity Index −1
% (1− e%z) all (recognized) free

Jeffreys − z
1− z all (recognized) 1

Minimum Word/Phone Error exp(z) all (recognized) 1 A(W, Wr)

of word sequences which are considered for discrimination in
utterancer. A class of discriminative training criteriaF can
then be defined by:

F
(
θ; f, α,G, {Mr}

)
= (1)

1

R

R∑
r=1

f

log


∑
W

pα
θ (Xr|W ) · pα(W ) · G(W, Wr)∑

W∈Mr

pα
θ (Xr|W ) · pα(W )


1/α


The choice of the set of alternative word sequences together
with the optional smoothing functionf , the weighting ex-
ponentα, and the gain functionG determine the particular
criterion. Table 1 lists some of the criteria included in this
approach. All criteria except MWE and MPE discriminate the
spoken word sequence, which is expressed by the choice of
the Kroneckerfunction δ for the gain function. In contrast to
this, the numerator in the MWE criterion considers the sum
overall possible word sequences weighted with a measure for
accuracyA. Note that all criteria are to be maximized, which
cause the negative sign in the smoothing function of the MCE
criterion, its maximum approximation, theFalsifying Training,
theDiversity Index, and theJeffreyscriterion. The derivative of
the unified criterion wrt. to the parameter setθ yields the well
known re-estimation equations, which can be found e.g. in [6]
for the MMI and MCE criterion, and in [2] for the MWE an
MPE criterion.

For the special case% = 1/2 andα = 1 the MCE cri-
terion directly minimizes the expectation of the sentence error,
i.e. the sum over1 − p(Wr|Xr) for all training utterancesr.
Smaller values of% smooth the sentence error, and thus, the
criterion minimizes an approximated error rate. This often
improves robustness towards outliers in the training data [11].
The same holds for theDiversity Index, which, in the case of
setting% = 1, is equivalent to theGini criterion. In contrast
to both theDiversity Indexand the MCE criterion, the MWE
and MPE criterion minimize the expectation of an unsmoothed
error rate. A possible extension would therefore be to integrate
a smoothing term into the gain function of the MWE/MPE
criterion, which might help to further reduce the error rate on
unseen data.

3. MCE on Word Lattices
Using the MCE criterion, the set of competing hypotheses
comprises all word sequencesW that are represented in a word
graph, except the spoken sequenceWr. In order to determine
the word probabilities on word graphs similar to the MMI
criterion, the spoken word sequence has to be excluded from

the word graph. However, in general removing a sentence
hypothesis from a word graph would change its structure and
would result in an increased lattice size, because particular
words of the spoken word sequence might be part of other
sequences, too. Therefore, the sum over all word sequences in
the word graph (represented byMr) including the spoken word
sequence is performed first, which afterwards is subtracted
from the probability of the spoken word sequence. Thus the
probabilityq of hypothesizing a wordw within the time frames
[tb, te] under the MCE criterion can be written as [7, 11]:

q[tb,te](w|Xr) =

∑
{W∈Mr|W 6=Wr

∧w[tb,te]∈W}

pα
λ(Xr, W )

∑
{V∈Mr|V 6=Wr}

pα
λ(Xr, V )

=

∑
{W∈Mr|

w[tb,te]∈W}

pα
λ(Xr, W )−

∑
{W∈Mr|W=Wr

∧w[tb,te]∈W}

pα
λ(Xr, W )

∑
V∈Mr

pα
λ(Xr, V )−

∑
{V∈Mr|V =Wr}

pα
λ(Xr, V )

(2)

Besides the best time alignment of the spoken word sequence, a
word graph may contain further copies of the spoken sequence
that may vary in boundary times and pronunciation variants.
Typically, the scores of these copies differ only marginally from
the score of the best alignment. Hence, for MCE training it
is necessary to detect and labelall alignments of the spoken
word sequence occurring in the word graph so that the sum
over the joint probabilities of these sentence hypotheses can be
subtracted afterwards from the word probabilities (cf. Eq. (2)).

4. Experimental Results
Experiments were conducted on three settings of theWall Street
Journal (WSJ) corpora [12, 13]. The three tasks differ in the
amount of training data and the vocabulary sizes. Table 2
summarizes some corpus statistics.

The WSJ0 recognition system uses 2000 decision-tree
based gender independent within-word triphone states plus one
state for silence. The states are assigned to Gaussian mixture
distributions with a total of 149k densities sharing one common
diagonal variance vector. The observation vectors consist of 16
cepstral features together with the first derivatives and the sec-
ond derivative of the energy. Each five adjacent input frames
are concatenated (including derivatives:5 × 33 = 165 input
features) and reduced to 33 output features via a linear discrimi-
nant analysis (LDA). The baseline recognizer appliesMaximum
Likelihood (ML) training using the Viterbi approximation and



Table 2: Corpus statistics and vocabulary sizes on theWall
Street Journal(WSJ0) task and theNorth American Busi-
ness(NAB) corpus.
corpus WSJ0 NAB-20k / NAB-65k

train dev eval train dev eval
acoustic data [h] 15:17 0:46 0:40 81:23 0:48 0:53
# speakers 84 10 8 284 20 20
# sentences 7240 410 330 37474 310 316
# running words 1309766784 5353 6420747387 8193

# lexicon words 10133 5007 15013 64735

achieves aword error rate(WER) of 4.14% on the combined
development1 plus the evaluation set (cf. Tab. 4).

The Nov. ’94 North American Business(NAB) training
corpus consists of the 84 speakers of the WSJ0 corpus plus
200 additional speakers from the WSJ1 corpus. Tests were
performed on the NAB Nov. ’94 Hub-1development and eval-
uation corpus. Both the 20k and the 65k recognition system
use 7000 decision-tree based gender independent across-word
triphone states plus one state for silence. The system employs
Gaussian mixture distributions with a total of 412k densities and
one globally pooled diagonal variance vector. As in the WSJ0
setting, 16 cepstral features together with their first derivatives
and the second derivative of the energy are used. Each three
consecutive observation vectors are concatenated and projected
onto a 32 dimensional feature vector via a LDA. The ML trained
recognizer achieves a WER of 11.47% for the 20k system and
9.28% for the 65k system on the combined development and
evaluation corpus (cf. Table 4).

In all discriminative experiments, the ML trained system
was used to generate high density word lattices for both the
numerator and the denominator model. The numerator lattices
were merged into the denominator lattices at which hypothe-
ses that were newly added to the denominator lattice or that
matched a denominator hypothesis were tagged with the label
”correct” in order to identify them for the MCE training. To
reduce the computational costs during discriminative training,
the lattice sizes were reduced via a forward-backward pruning.
The resulting word graph densities are shown for the WSJ0
corpus in Table 3. For all iterations of the discriminative
training the hypotheses encoded in the word lattices were re-
aligned within their boundary times (the Viterbi segmentation
points) as determined in the initial recognition phase. For MCE
training the smoothing constant% was set to 0.04. Since MWE
is reported to give slightly better results than MPE on the WSJ

tasks [3], we used the MWE criterion for the comparison.
Figure 1 depicts the evolution of the WER on the combined

development and evaluation set of the WSJ0 corpus in the
course of the iteration process for the MMI, the MCE, and
the MWE criterion. The relatively large number of training
iterations that were necessary in order to find the best parameter
set (wrt. test set performance) is contrary to what is reported
in literature. Usually, it requires 4-8 iterations only before
discriminative training starts to overfit the training data and,
hence, deteriorates test set performance [2]. However, in this
setting, the effect is caused by using a pooled variance vector.
Since in discriminative training convergence speed is usually
adjusted under a positive variance constraint, using state or
density specific variances provides much more constraints in
order to chose the ”correct” step size, which often results in
faster convergence [14].

1 Since the official WSJ0 corpus does not provide a development set,
the 410 sentences were extracted from 10 new speakers of theNorth
American Businesstask.
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Figure 1: Evolution of the word error rate (WER) on the
combined development plus evaluation set of the WSJ0 corpus
in the course of the iteration process for theMaximum Mututal
Information(MMI), Minimum Classification Error(MCE), and
Minimum Word Error(MWE) criterion.

Table 4 shows the word error rates for the discriminative
criteria MMI, MCE, and MWE. Compared with the ML trained
system, the MMI criterion results in a word error rate of 3.85%,
which is a relative improvement of 7%. Compared to this, the
MCE and the MWE criterion result in 3.75% WER, which is a
relative improvement of 10% compared to the ML baseline, and
ca. 4% performance gain in comparison with the MMI result.
Surprisingly the MWE criterion does not seem to be superior
to the MCE criterion for this setting. Though both criteria
lead to a consistent reduction in terms of WER compared to
the MMI criterion, the performance gain might be less caused
by a direct minimization of a loss function but by the stronger
robustness of MCE and MWE towards outliers in the training
data. Moreover, MWE directly minimizes the expectation of
the word error, although the decision in recognition is made on a
sentence level. Thus, MWE would potentially outperform MCE
in combination withBayes Riskminimizing decision rules [15].

The experiments conducted on the NAB-20k and NAB-65k
tasks (cf. Table 4) show similar results. Though the absolute
improvement of MCE compared with MMI is only marginal,
MCE gives consistently good results on both the development
and the evaluation set. As in the experiments conducted on the
WSJ0 corpus, the smoothing constant was set to0.04. Note
that the NAB-65k system uses the same acoustic models as the
NAB-20k system, yet with an extended pronunciation lexicon
that reduces the number of unknown words on test data from
2.7% to 0.7%. In both settings the MWE criterion leads to
slightly yet not significant increases in terms of WER compared
to MMI. The improvements observed range in the same order
of magnitude as the performance gains reported in [3, p. 114].

Table 3: Word graph densities on the training, development, and
evaluation set of the WSJ0 corpus together with the respective
graph error rates(GER).
corpus WSJ0

train dev eval dev+eval
avg. #arcs per spk. word210.86 237.32 261.89 248.28
avg. #arcs per rec. word159.84 189.13 202.64 195.15
avg. #arcs per frame 99.89 81.07 78.42 79.83
GER[%] 0.0 0.22 0.09 0.16



Table 4: Word error rates (WER) and sentence error rates (SER) on theWall Street Journal(WSJ0) corpus and theNorth American
Business(NAB) corpora for a class of discriminative training criteria, including theMaximum Mutual Information(MMI) criterion,
Minimum Classification Error(MCE), andMinimum Word Error(MWE).
corpus WSJ0 NAB-20k NAB-65k

dev eval dev+eval dev eval dev+eval dev eval dev+eval
WER SER WER SER WER WER SER WER SER WER WER SER WER SER WER

ML 4.48 40.2 3.72 34.9 4.14 11.48 73.9 11.46 76.3 11.47 9.21 67.1 9.35 71.2 9.28
MMI 4.16 38.8 3.46 33.3 3.85 11.18 73.6 11.02 74.1 11.10 8.93 67.7 8.97 69.0 8.95
MCE 3.98 37.1 3.44 33.0 3.74 11.11 74.2 10.97 75.3 11.04 8.81 67.1 9.04 69.3 8.93
MWE 4.05 37.3 3.36 31.2 3.75 11.17 73.2 11.22 75.3 11.19 8.84 67.7 9.11 70.6 8.98

5. Conclusions
In this paper we investigated the use of theMinimum Classi-
fication Error (MCE) criterion for training the acoustic model
parameters of a large scale speech recognition system. In con-
trast to other studies, all statistics necessary for re-estimating
the model parameters under the MCE criterion have been deter-
mined on word lattices for both the correct and the competing
model. Thus, particularly for long utterances, the number of
sentence alternatives taken into account in training is signifi-
cantly larger compared toN -best lists.

The investigations were carried out within an extended uni-
fying framework for discriminative training criteria that, besides
MCE, also includes theMaximum Mutual Information(MMI)
and theMinimum Word Error(MWE) criterion. While MCE
showed consistently better results compared to MMI of up to
4% relative on theWall Street Journaltask, its performance
in terms of word error rate (WER) turned out to be in the
same order of magnitude as MWE. Compared to aMaximum
Likelihood trained system, the MCE criterion lead to relative
improvements of between 4% and 10% in terms of WER.
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