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Abstract
The IBM Models (Brown et al., 1993) enjoy great popularity in the machine translation community because they offer high quality word
alignments and a free implementation is available with the GiZAolkit (Och and Ney, 2003). Several methods have been developed
to overcome the asymmetry of the alignment generated by the IBM Models. A remaining disadvantage, however, is the high model
complexity. This paper describes a word alignment training procedure for statistical machine translation that uses a simple and clear
statistical model, different from the IBM models. The main idea of the algorithm is to genesgtaraetricand monotonicalignment
between the target sentence arqukamutation graphepresenting different reorderings of the words in the source sentence. The quality
of the generated alignment is shown to be comparable to the standard-@idAing in an SMT setup.

1 Introduction 2 Statistical Alignment Models

The task of statistical machine translation is to translate

Currently, the majority of statistical machine translationan input word sequencg/ = fi,..., fs in the source
systems is trained using word alignments of parallel cor{fanguage into a target language word sequeace=

pora generated by the complex IBM Models (Models 3,¢,, ..., ¢;. Given the source language sequence, we select
4 or 5, see (Brown et al., 1993)) with the GIZAoolkit  the target language sequence that maximizes the product of
(Och and Ney, 2003). This paper describes a word alignthe language model probabilityr(e!) and the translation
ment training procedure for statistical machine translatiormodel probabilityPr(f{|e!). The translation model de-
that uses a simple and clear statistical model, different frongcribes the correspondence between the words in the source
the IBM models. and the target sequence whereas the language model de-

The novel training method described here produces wordcribes well-formedness of a target word sequence. Intro-
alignments for statistical machine translation while simul-ducing a hidden variable, the translation model can be writ-
taneously reordering each source sentence to match tf{gn as:

word order in the corresponding target sentence. This re- T Iy J Ji I

ordering has shown to improve translation quality (Kanthak Prifile) = Z: Pr(fi;ailer)

et al., 2005), (Crego et al., 2005) when using reordering in “

search. wherea{ are called alignments and represent mappings
The main idea of the algorithm is to generatmanotonic  from the source word position to the target word posi-
alignment between the target sentence aper@nutation tioni = a;. Alignments are introduced into translation
lattice representing different reorderings of the words inmodel as a hidden variable, similar to the concept of Hid-
the source sentence. In contrast to GiZAlignments, den Markov Models (HMM) in speech recognition.

this alignment issymmetric i.e. it allows for many-to- The translation probabilit’r(f{’, a{|e]) can be factorized
one and one-to-many connections simultaneously. Furthe@s follows:
more, full coverageis ensured for source and target sen- J
tence. _The aligpment_ i; determined with a (_jynamic_: pro-  Pr(f{, allel) H pr(fj,aj‘fffl,aﬂl'*l,e{)
gramming algorithm similar to the Levenshtein algorithm. j=1

In addition, the best permutation of the source sentence is 7
[T P
Jj=1

selected from the given permutation lattice in the global de- r ajlff_l, a{—l) e{) .
cision process. This distinguishes the approach presented
here from the methods presented in literature, where static _Pr(f_|fj,1 o e,)
word alignment information is used for reordering. JUL T

In the following section, we will give a review of the WherePr(ajlfffl,a]fl,ef) is alignment probability and
most common statistical alignment models. Section 3Pr(f;|f/ ™", al,e!) is the lexicon probability.

gives a short description of the translation framework usingn all popular translation models IBM-1 to IBM-5 as well
weighted Finite State Transducers (WFST). A new lexicon-as in the HMM translation model, the lexicon probabil-
based method for reordering in training is introduced inity Pr(f;|f{ ", al,el) is approximated with the single-
Section 4 and the alignment procedure is described in detaiord lexicon probabilityp(f;leq;) which takes into ac-
in Section 5. We will present some experimental results ircount solely the aligned wordg; ande,;. The mod-
Section 6.2. els differ in their definition of the alignment model
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Figure 1: Example for reordering in training. From a given alignment (top) we reorder the source words to generate a
monotonic alignment (bottom). Below the alignment matrices the bilanguage representation is shown. It can be seen that
by reordering the source sentence, the assignment in the intermediate language improves.

Pr(a;|fi~',a)"" el). A detailed description can be In experimental trials it turned out that 44gram model
found in (Och and Ney, 2003). yields the best performance for most translation tasks. For
Other methods for word alignment often use heuristic mod-better generalization we applied absolute discounting with
els based on cooccurrence counts, such as (Melamed, 200@paving-one-out parameter estimation.

or recently (Moore, 2005).
3.2 Reordering in Training

3 Statistical Translation with Finite State While most approaches only use the initial alignments to

Transducers extract bilingual tuples without reordering, the RWTH sys-
3.1 Approach tem first uses alignments which are functions of the source
In statistical machine translation, we want to find the targetvords to reorder the source corpus to reflect the target sen-
sentence! with the highest probability for a given source tence order. The tuples are then extracted using the re-
language senteng®’ . Here, we formulate the decision rule ordered corpus.

for maximizing the joint probability of source and target Given an initial (non-monotonic) alignment, we reorder the
sentencePr(f{,el). As in equation (1), the alignment is Source words to form a monotonic alignment. The effect of

introduced as a hidden variahte reorde_ring on the bilanguage represe_ntation of the align-

ment is shown in Figure 1. Reordering helps to extract

; L smaller tuples, leading to a better generalization on unseen

¢ = argmaxPr(f{,e]) (1) data.
Le In most approaches, alignment and reordering are treated as
~ argmaxmax Pr(A) - Pr(f{.e{|A) (2) separate problems. Firstthe bestalignment is generated and
a p p g g
Ley then the source corpus is reordered given this alignment.

For representing the joint events of source words and targgth® obtained reordering is static and cannot be changed. It
words occurring together, we use given alignment informad$ not clear, if the alignment is still optimal with the given
tion to createbiwords i.e. from a pair of aligned source and réordering. In contrast, with the novel algorithm presented
target word we create a new word separated by a delimitin? this work, alignment and reordering are determined in a
symbol. Each token in the bilanguage represents the eveftobal decision process.

of the source wordg and the target word&being aligned o .

in the training data. For these events, we want to modef-3 Reordering in Translation

the joint probability Pr(f,e). The transformation of the In search, alignment information is not available. Reorder-
whole training corpus in such a way results inilanguage  ing, however, is necessary since the training examples were

representation of the training corpus. extracted on a reordered source corpus and word order in
On this new corpus, we apply standard language modelintyple sequences does not match the original word order.
techniques to train smoothed-gram models. Therefore, we consider permutations of the source sentence

An m-gram language model can also be represented by ia translation. Since arbitrary reorderings are infeasible for
FSA. The histories can be interpreted as the states of thlarger sentences, we use constrained reordering, for exam-
FSA (Allauzen et al., 2003). ple with the IBM constraints (Berger et al., 1996) or local

In the RWTH system as described in (Kanthak and Neyconstraints as described in (Kanthak et al., 2005). They use
2004), the source language side of the tuglés always a  linear automata to represent sentences and efficiently com-
single source word. The corresponding target téplea  pute permutation automata on demand.

sequence off or more target words. For the unique map- We follow the formalism from (Matusov et al., 2005),
ping, we require an alignment that is a function of the targetvhere permutations of the source sentence are represented
words. in a permutation graph. The unpermuted sentence is a lin-
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Figure 2: Automaton constructed by composing the linear automaton of the source sentence with the lexicon transducer for
the sentence pair. The weights are lexical probabilities.

O wir koennen den Zug nehmen @

Figure 3: Linear automaton of the source sentence.

ear automaton, having the words as arc labels as shown ﬁgure 4: Permutation automaton representingtHeest

Figure 3. From this linear automaton with words as arc layeqrderings. Identical prefixes of different reorderings are
bels, permutations can be computed e.g. as described |Bined in order to reduce redundancy.

(Knight and Al-Onaizan, 1998). By using coverage vec-

tors in the state descriptions, we keep track of the covered

source words. In general, it can be expected that largebest lists yield

better results, since they offer more possibilities for reorder-

4 N-Best Reordering ings. Adjusting the size of the-best list allows for a conve-

A static alignment for reordering in training is one way nient way to balance runtime with permutation space cover-

to address the reordering problem for machine translatior?g€- Unfortunately, as we need to know the target sentence

The disadvantage is that the reordering is not integrated intt the process of generating the reorderings, this approach

the iterative alignment training algorithm. A more flexi- 1S only applicable in the training phase.

ble approach is to provide multiple reordering hypotheses . .

when determining the alignment. 5 Details of the Algorithm

In training, the source sentence and the corresponding taf-he alignment produced by the algorithm is monotone and

get sentence translation are available and are used to firgymmetric. It consists of a sequence of aligned words,

the best ways of reordering the source sentence to matdiepresented by< aligned pairs of source and target word

the target sentence word order. To determine#it@st re- A = ai,as,...,ax Wherea, = (ix, ji) andiy is the in-

orderings for a given source sentence and target sentendex of the target word aligned to the source word with index

we first generate a weighted finite state transducer whosg.. For monotony, we need to ensure that< i, ; and

arcs are labeled with the translation probabilities from ajx <= jrx+1. The alignment is also contiguous, i.e. no

given lexicon (dexicon transducex In this transducer, ev- word is left out. Therefore, we have the additional con-

ery source word can be associated with every target wordstraints that, < 1 +ix_; andjx < 1+ jr_1. The index

In the next step, we create a linear unweighted automatopairs(1, 1) and ending ir(Z, J) are always part of the align-

of the source sentence (Figure 3). ment. The alignment that maximizes the model probability

A first approach would be to compose the target sentenctéen is:

with the lexicon transducer and extract the best source word %

sequence. This, however, can result in sequences with in- A= argmax H Pr(fi, el qu%c,ejlf)

complete source sentence coverage. Therefore, we follow a ap,k=1,....K

k=1
different approach. In order to ensure that all source words ) ) )
are covered, we first compose the source sentence with tfgeading the arc labels of an alignment path gives us the re-

lexicon transducer. ordering of the source sentence if we just read the source
This composition results in an automaton as shown in FigSymbols or the bilanguage representation if we join source
ure 2. In this automaton every path from the initial state to@nd target words on each arc. The training procedure in-
the final state represents a mapping of source words to ta¥olves the following steps:

get words. In this graph, we determine thédest distinct « For each sentence pair, an alignment latficis gen-
paths and reorder each path according to the target sentence erated. The alignment lattice contains all possible

yvord order. Of the resulting transducer, we just keep the alignments between the words of the source sentence
input labels that now represent the source sentence reorder- and the words of the target sentence. The individ-

INgs. ) ) ) ual alignments are weighted with the corresponding
The resultlngn—bes_t I|s_t can be con.densed in suc.h a way, model (e.g. lexical) probability.

that reorderings with identical prefixes are combined into

one path. With this procedure we can create a permutation e The alignment lattice is composed with the permuta-
graph as shown in Figure 4. tion graph of the source sentence. This ensures source
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ous. Since we want to allow for source sequence reorder-
ings any possible source word has to be considered at the
horizontal and diagonal transitions in the lattice.

The individual states in the lattice represent the current po-
sition in the target sentence (bottom to top) and the number
of source words read (left to right).

In the resulting automaton, every path corresponds to an
alignment of source sequence and target sequence, where
source words are in the order of their aligned target words.
In order to determine the best alignment between source
and target sequence, we determine the best path though the
composition of alignment lattice and permutation automa-
ton using a general search algorithm.

The lexical probabilities can be modeled taking different
context lengths into account. In analogy to the Levenshtein
alignment, we first decided to use a zero-order model,

6@(\": .f.“.':\ where only the current transition is taken into account. This
Qfa?. LB, ."9; is then extended to a first-order model by the context of
wirde .- "mir QQ % mir A the previously aligned words. The models are described in
%\ 2(’% ;f\ & more detail in the following sections.
% L &
nir 5.1 Zero-Order Model

For the diagonal transition, the probability is given by the
joint lexicon probabilityp,( f, e) of the source word' and
Figure 5: lllustration of the alignment process using a perthe target word: involved. The horizontal transitions have
mutation graph and a monotonic alignment lattice. no direct association with a target word and are weighted
by the probabilityp,, (f|e). Similarly, the probabilities for

d icts the ali the vertical transitions arg, (¢|e).
sentence coverage and restricts the alignments permig- initializing the lexicon probabilities of the zero-order

ted in the alignment lattice. The target sentence is IefFnodel, we decided to use the probabilities obtained from
unpermuted. the IBM Model 1. Being simple and easy to obtain, IBM
Model 1 also has the advantage of making no assumptions
n the word ordering in the languages. This allows us to
ecide independently of the lexicon, which reordering con-
straints are suitable for the given task.

Having the named advantages, IBM Model 1 offers a good

Finding the best monotonic alignment between source angtarting point for the training of other alignment models.
target sentence corresponds to finding the best sequenceffr our experiments, we rely on the symmetrized version
monotonic transitions. A monotonic path consists of threeof the translation lexicon as described in (Zens et al., 2004).
different types of transitions: A diagonal transition takeslLexica for the source-to-target and target-to-source transla-
place when a source and a target word are assumed to §€n direction are combined log-linearly. This has shown
directly associated with each other. It corresponds to 40 improve alignment quality. Furthermore, with the mod-
match/substitution in the Levenshtein algorithm. A hori- €IS proposed in this section, symmetric alignments will be
zontal or a vertical movement can be interpreted as an ingenerated. Therefore, using a symmetric lexicon model for
sertion of a source word or a target word, respectively. Thdnitialization seems to be advisable.
probabilities each movement are given by a statistical bilin-The concept for the implementation of the training uses
gual lexicon. a recursive problem formulation. The auxiliary quantity
Each of the three types of phrasal tuples can be seen asiy,j) defines the maximum probability for aligning the
different movement in the alignment lattice. The regularfirst target words ang source words. The recursive for-
one-to-one tupléf, ¢) corresponds to a diagonal transition Mulation ofQ (i, j) is
in the alignment lattice. The tuplég, <) and(e, e) corre- o , ‘
spond to a horizontal and vertical movement, respectively. ~ @(¢:J) = max {QU =1, =1)p(f;, ),
The states in the alignment lattice indicate which source QU,j—1)  p(fse),

-p(f—:, 61)} (3)

and target words have already been covered. Qi —1,5)

For permutation, it is possible to use either the constrained

reorderings or then-best reorderings presented in Sec-In this simple way, the recursive function does not allow for
tion 3.3. The general process is illustrated in Figure 5. reordering and still assumes a monotonic alignment. To ex-
The alignment lattice is constructed in such a way, that arctend the algorithm, we change the source index paranjeter
are labeled with the source and target words associated af the auxiliary function to the coverage vecter To de-

the current position. For the target words, this is unambigutermine the previous states of coverage vectave define

e From the composition of permutation graph and align-
ment lattice, the best path is extracted. This can b
seen as simultaneously finding the best path throug
the alignment lattice and the permutation graph.



a predecessor sétred(c), that contains all coverage vec-

tors that are predecessorsch the permutation graph. If Table 3: Corpus Statistics for the German-English Verb-

mobil Corpus and the Spanish-English Xerox Corpus. The

¢ € Pred(c), j is the index of the source word in which . ;
ande differ. The maximization has to be extended to the sefV€r29¢€ number of reference translations for the Verbmobil
' corpus is 3.9 for the test set while the Xerox corpus only

of predecessors. Additionally, each arc in the alignment Iat-h d sinale ref
tice can be associated with the transition probabjity), ad singie reterences
p(h) or p(v). This can be used to favor diagonal transitions

in the alignment. The complete auxiliary quantipyi, c) . German| English [| Spanish| English
then is train Sent. 58073 55761
R. Words | 519523 | 549921 || 752606 | 665399
Q(i, ¢) = max { Voc. | 7939 | 4672 || 11050 | 7956
max Q(i—1,¢)pa(f;,e) p(d), test Sent. 251 1125
obredle) R.Words | 2628 | 2871 || 10106 | 8370
Jmax Q) pu(fe) p(h), Voc. | 429 | 402 || 1215 | 1132

Q(i—1,¢) pule,ei) p(v)}

Initialization of Q(i, j) is done as in the Levenshtein al- With respect to translation quality (as measured by well-
keep track of the correspondence of source and target wot@9 Procedure fits especially well with a joint-probability

and allow for one-to-many and many-to-one alignments. WFST translation system (Kanthak et al., 2005). This sys-
tem searches for the best translation by composing a lattice

5.2 First-Order Lexicon Model that represents constrained reorderings of the source sen-
As a refinement, the lexical probabilities for the non-tence with a WFST representation of a bilinguaigram
diagonal transitions can includist-order context depen- model.

dency on the previous source woftland the previous tar- EXxperiments were carried out on the German-English Verb-
get worde’, i.e. pn(f|f',€') andp, (e|f’, '), respectively. mobil task and the Spanish-English Xerox task with the
The previously joint event of a source or target word with-training, development, and test data as shown in Table 3.
out a direct association with a word in the other language ig'he Verbmobil task contains dialogues about appointment
now written as a conditional probability of the word, given scheduling and hotel reservation. The Xerox task is the

the previously aligned words. translation of instruction manuals for technical devices.

For initialization, the probabilities are obtained from an Despite many approaches, there is still no generally ac-

alignment generated by the zero-order model. cepted criterion for the evaluation of machine translation
output. Different available measures capture different as-

5.3 Alignment Procedure pects of the translation quality, therefore we will provide

The probability distributions are initialized with a simple several evaluation measures: The word error rfifer),
lexicon model — IBM Model 1. Then, the alignment and re- the position-independent word error raReR), the BLEU
ordering is improved in an iterative training procedure. Thecriterion and theNIST precision measure.

lexicon probabilities in the next iteration are reestimatedror each of these evaluation measures, multiple references
using relative frequencies based on the alignments for thevere used for the Vlerbmobil, but not for the Xerox task.
whole training corpus in the previous iteration.

The reordering of source words is achieved by considering.2 Experimental Results

the pel’mutation lattice. The lattice is processed from left tOrhe overall performance of the proposed a“gnment proce-
right. Having processeflsource positions, all lattice word  qgure compares well with the GIZAIBM Model 4 training
alternatives for the position+ 1 in the (reordered) source \yhile using a significantly simpler model.

sentence are hypothesized with every diagonal or horizontatapie 1 shows the translation quality for the German-
transition. English Verbmobil task when using this WFST system. The
. error measures were computed with respect to multiple ref-
54 Impleme'ntanor.\ ) erences. The table shows, thatest reordering has a
The permutation lattice is computed on-demand under thgjighy worse performance than the IBM constraints. How-
reordering constraints described in Section 3.3, or we USBver, for large corpora, alignment with these constraints is

then-best reorderings as described in Section 4. not feasible due to the computational complexity. Using the
The algorithm was implemented using weighted finite statg, jqq¢ reorderings results in a major speedup of the align-

transducers (WFSTs). This allows for a convenient incory,ant procedure. For the Vierbmobil corpus, the first-order
poration of the permutations described above.

€ p ; : ve. In contrastyoge| performs worse than the zero-order model. This can

to GIZA~, a distributed implementation of this algorithm is pe 4tiributed to data sparseness problems. In fact, most of

straightforward. the bigrams of bilingual tuples are only seen once in train-

. ing, making probability estimates very unreliable. This
6 Experiments problem does not occur to this degree for the zero-order

6.1 Experimental Setting model.

The word alignment and reordering methods presented hefBable 2 shows the evaluation scores of the translation for

were evaluated on three different machine translation taskthe Spanish-English Xerox task test corpui-best re-



Table 1: Translation performance on the German-English Verbmobil task using the proposed training algorithm. Reordering
in translation is performed under the IBM constraints, window size 4.

training model reordering in training WER [%] | PER[%] | BLEU [%] | NIST
GIZA+ IBM model 4 | static 36.2 274 49.1 8.00
zero-order IBM constraints (window size 4 35.9 22.8 49.0 7.77
zero-order N-best reordering{ = 1000) 36.5 22.8 47.5 7.75
first-order IBM constraints (window size 4)  36.1 22.1 48.9 7.82
first-order N-best reordering/{ = 1000) 36.9 231 47.8 7.74

Table 2: Translation performance on the Spanish-English Xerox task using the proposed training algorithm. Reordering in
translation is performed under local constraints, using the same window size as in training.

training model reordering in training WER[%] | PER[%] | BLEU [%] | NIST
GIZA IBM model 4 | static 35.7 19.7 54.0 8.69
zero-order local constraints (window size 3) 29.6 21.9 57.3 8.71
first-order local constraints (window size 3) 29.3 21.6 57.5 8.76

ordering was not performed here, since the language paReter F. Brown, Vincent J. Della Pietra, Stephen A. Della Pietra,
only requires local reorderings, which are sufficiently fast and R. L. Mercer. 1993. The mathematics of statistical ma-
to evaluate. In contrast to the Verbmobil corpus, the first- chine translation: parameter estimatioBomputational Lin-
order model gives a slight improvement over the zero-order 9uistics 19(2):263-312, June.

model. In the domain of the Xerox corpus, technical man-J- M- Crego, J. B. Mari no, and A. de Gispert. 2005. Reordered
uals, expressions are more standardized and less free asseargh, and tuple unfoldmg for Ngram-based SMT.Po- .
in spontaneous speech. Therefore, more reliable bigram S¢84iNgs of the MT Summit Kages 283-289, Phuket, Thal-

t the level of bili [ tupl be obtained land, September.
counts on the fevel of bringlat fiples can be oblained. S. Kanthak and H. Ney. 2004. FSA: an efficient and flexible c++

. toolkit for finite state automata using on-demand computation.
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