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Abstract
One activity of Siemens in the TC-STAR project is to develop a high-quality text-to-speech (TTS) system for UK English. Our main
focus is the improvement of the text preprocessing and the acoustic synthesis. Therefore in the second evaluation we took part with
the text preprocessing module (task M1) and the whole system (tasks S1 and S2) for UK English. In this article the three modules text
preprocessing, prosody generation and acoustic synthesis are described. The results we achieved in the second evaluation are investigated.

1. Introduction

Main focus of the recent development was a TTS system for
embedded systems like mobile phones or PDAs. Restric-
tions like CPU bandwidth and memory consumption had
to be considered during the design of that system. Several
steps were taken to save memory, for instance the weights
of the neural networks were stored as 8bit fixed-point val-
ues instead of 32bit floating-point values. Another reason
to use fixed-point arithmetic was that most CPUs in embed-
ded systems do not have a floating-point unit. The speaker
database was compressed, and only small lexica were used.
The result was a TTS system with a memory footprint of
less than 500 kilobyte, and on an ARM-9 platform a CPU
bandwidth of 50MHz was necessary to achieve speech out-
put in real time. This system is available in seven languages.
The goal for the development within the TC-STAR project
is a high-quality TTS system for UK English. This will
be achieved by the improvement of all three modules. In
the text preprocessing, more detailed rules or algorithms
are applied, bigger neural networks (more input context)
and huge lexica are used. The prosody generation is based
on more information (e. g. POS tags) and also uses bigger
neural networks. Main difference is the acoustic part. Here
a non-uniform unit selection based on a speech corpus of
about 10 hours yields to a more natural sounding voice.

2. Text Preprocessing

The task for the preprocessing module is to prepare the in-
put text for the other modules. The text is split into para-
graphs and sentences, numbers and abbreviations are con-
verted, and for every word the part-of-speech tag and the
phonetic transcription are determined.

2.1. Text Normalization

The end-of-sentence detection aims at breaking a text into
single sentences. In most cases, this can be done by break-
ing at each potential end-of-sentence punctuation (”.”, ”?”,
”!”). However, sometimes, we face exceptions of this sim-
ple rule (at abbreviations, nested punctuations and the like).
These are treated by means of word lists which are automat-
ically learned from a training text and contain abbreviation
suffixes, typical first words of sentences and abbreviations
that are mostly located at the end of a sentence.

2.2. Phonetic Transcription

The grapheme-to-phoneme conversion uses a phonetic lexi-
con and two neural networks for the out-of-vocabulary han-
dling (Hain, 2000). In a first step, the word is looked up in
the lexicon. If it cannot be found there, the algorithm tries to
find parts of the word in this lexicon. The transcriptions of
these parts are then concatenated. If there are gaps between
the parts or at the beginning or the end of the word, or if
nothing can be found in the lexicon, then two neural net-
works are used. The first network generates the phoneme
sequence including the syllable boundaries (cf. Figure 1),
and the second network determines the position of the lexi-
cal stress within the phoneme sequence.
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Figure 1: Neural network for phoneme string and syllable
boundaries.

2.3. Number Handling

The number type recognition is performed by a rule based
approach (Hain, 2005). The rules consist of two main parts:
the syntax of the number string and the handling of each
part of this number. For example, the US date 04/21/05 in
the form MM/DD/YY is recognized by the rule
syntax: month { replace 1-2 1-12 } / { word } day { ord 1-2
1-31 } / { word } year { yspell 2-2 0-9 }



Figure 2: Sentence model for prosody generation.

order: 3 1 5
insert: 2 of
The month has to be a number that consists of 1 or 2 digits,
and the number must have a value in the range from 1 to 12.
The number will be replaced by the name of the month for
the pronunciation (e. g. April instead of 04). The day must
have one or two digits with a range of 1 to 31. It is pro-
nounced as an ordinal number. The year must contain two
digits, only one digit is not allowed here. The rule covers
the special case that the year starts with 0. This is necessary
because then the year is read digit by digit (therefore the
type yspell and the 0 is read as oh instead of zero. The parts
of the date are spoken in the order 3-1-5 (day-month-year),
and the preposition of is inserted between day and month.
This results in the pronunciation twenty-first of April oh-
five.
The phonetic transcription of the numbers is determined
by a graph based algorithm (Flach et al., 2000). The digit
string is split into smaller parts for which the pronunciation
is given in a lexicon.

2.4. Part-of-Speech Tagging
We use a statistical part-of-speech tagger that makes use of
n-gram statistics extracted in a training phase. As training
data, the Wall Street Journal corpus (Santorini, 1990) con-
sisting of about one million running words was used. By
means of an automatic conversion procedure, the original
spelling convention (US English) was adapted to the tar-
get convention (British English) as required in the frame-
work of TC-Star.We used an n-gram order of 5 and applied
a probability smoothing technique based on linear inter-
polation with weights depending on the training data cov-
erage as suggested in (Sündermann and Ney, 2003). Un-
known words were also treated using a linear interpolation
technique whose weights were estimated as described in
(Samuelsson, 1996).

3. Prosody Generation
In the context of this project the training of the modules
for the prosody generation and the preparation of the cor-
responding database (voice ’Laura’, UK) was carried out.
The module for the prosody generation, described in the
following section, was brought in at the beginning of the
TC-STAR project and can be considered as pre-existing.

The prosody generation covers the modules for estimat-
ing the prosodic parameters: fundamental frequency as well
as duration and energy for each phoneme. The estimated
prosody parameters are provided for the succeeding acous-
tic processing stage and used as target values for the signal
manipulation.

3.1. Goal
The quality of a TTS system depends on signal quality on
the one hand, and on naturalness of voice on the other hand.
Naturalness of voice is reliant on the capability of prosody
generation. The goal of our prosody generation module is
to achieve a very natural prosody in general. Furthermore
the prosody estimation should be expandable to be able to
imitate the prosody outline of the original speaker, e.g. for
corporate voices. Expandable means that performance and
quality of the prosody generation is increasable by the use
of additional information delivered from the text prepro-
cessing module, e.g. part of speech tags (POS), and the pro-
cessing of more context information. The prosody module
is scalable regarding quality, computation effort and mem-
ory consumption in a wide range and can be adapted to the
needs of the appropriate application.

3.2. Approach
We followed the common approach which divides the task
of prosody generation into two components. Within the
symbolic modeling component “symbolic prosody”, the in-
put phoneme stream is processed and enriched with tags
that contain information about prosodic intent like accent
peaks and boundaries. The acoustic modeling component
“acoustic prosody” processes the linguistic representation
and generates the prosody parameters.
The symbolic prosody is realized as a multi-layer per-
ceptron (MLP) neural network (Müller and Zimmermann,
2001). The input information is processed on word level
and applied from the text pre-processing module. It con-
tains word positions and POS tags in a defined context
range. As result of the symbolic prosody the positions of
phrase boundaries (full prosodic phrases B3, ToBI label-
ing conventions) and phrase accents (primary accents PA,
ToBI) are estimated.
For the acoustic prosody a new approach for prosody pa-
rameter estimation was developed (Hain et al., 2003). Our
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Figure 3: Data flow within the Papageno Unit-Selection Module. It switches between triphone unit selection (upper path)
and diphone unit selection (lower path) depending on the active inventory.

approach implements the combination of symbolic and
acoustic information within one feature vector for a neural
network (NN), and estimates the acoustic prosody param-
eters (frequency, duration and energy) on phoneme level.
The acoustic prosody parameter estimation is performed in
the following four steps.

First the sentence structure analysis divides the given sen-
tence, delivered from the preceding text processing stage,
into parts like phrases, words and syllables and calculates
the positions of these parts. Secondly for each phoneme a
set of features is extracted, an input vector is generated, the
output values via NN are computed and finally a post pro-
cessing for outlier detection and correction is performed.

The neural network is realized as an MLP with an input
layer, a scaled input layer (input vector scaled by weight-
decay-matrix), a hidden layer and an output layer.

In this special approach the feature extraction is based on
a new sentence model. Compared with standard procedures
this approach offers a scaled view to the complete sentence
within each input vector. Our sentence model was designed
in the following manner 2: First the regarded phoneme, for
which the parameters are to be estimated, is represented as
central phoneme within the context phonemes and charac-
terized by its index, type, accent, break level, and position.
Then this center phoneme and context phonemes represent
a center syllable, which is specified by its length and posi-
tion. This center syllable and some neighbor syllables de-
scribe a center word by length, position, accent level, and
linguistic category. This center word and context words de-
scribe a center phrase by position, length and accent infor-
mation. Finally the sentence enfolds the center phrase and
context phrases.

4. Acoustic Synthesis
The acoustic synthesis module produces audio data based
on the specification (list of phonemes) given by the text
preprocessing module (e.g. PhoneId, Accent Level) and en-
riched by the prosody module (phoneme duration, f0 con-
tour, intensity contour). As can be seen from fig. 3 the mod-
ule chooses the unit selection method depending on the type
of the active inventory. Within the TC-STAR, (only) the tri-
phone setup has been evaluated, of which the unit selection
sub-module is being developed as part of the project.

4.1. Triphone Unit Selection

The Papageno triphone unit selection was designed with the
following major constraints kept in mind:

1. Frontend (text preprocessing and prosody) interface
must be the same as for the diphone system.

2. It shall drive the existing synthesis backend.

3. Use a compatible structure of binary resource files.

4. It must coexist with the diphone synthesis (runtime
switchable).

5. Resource usage (memory and CPU) must be accept-
able for midrange (embedded) platforms.

6. Step based processing to keep environment working.

(1) is implemented by transforming the input sequence into
a reference sequence (see fig. 3) whose member’s data
structure is optimized for efficient comparison with inven-
tory entries. To drive the synthesis backend according to
claim (2) from the selected inventory units a temporary in-
ventory with entries of the same structure as for the diphone
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Figure 4: Structure of the audio processing sub-module. The division of the synthesis blocks (Speech Codec Integrated
Synthesis and Cepstral Synthesis) summarize the purpose of the block. It is given as an analogous to a system based on
time-domain based manipulation and concatenation.

synthesis is generated (memory intensive data like the au-
dio parameters or the pitch sequence is just linked, though)
and referenced by a backward compatible driving sequence.
This corresponds with (3) which is based on a compatible
inventory header and compatible subfields of the units (e.g.
audio parameter storage, pitch sequence storage). Finally
the main influence of goal (5) has been to concentrate on
features which can be matched inexpensively, thus relying
on a carefully selected database (i.e. w.r.t. segmentation and
annotation).
The search itself is based on a (Viterbi) best-path search,
where the list of the local candidates is ranked (and op-
tionally pruned). Features are individually weighted, the
weighting vector depends on the phoneme class for local
features, or the pair of phoneme classes for transition fea-
tures.
Within the inventory there exist units of two kinds:

• Base (Context) Unit:
Links to ‘Real’ preceeding and next neighbor (if
present), stress level, mean T0, phone ID

• Full Unit (inherited from Basic Unit):
T0 contour description, class–relative intensity, coded
pitch sequence, samples/codec parameters

The search configuration is supplied in a format similar to
.ini files, with extensions to allow simple specification of
groups which share some properties (phoneme classes may
be clustered and values may be given by reference instead
of direct values). The configuration can be reloaded before
each search, in total or in parts. (Selected) Groups are

• Phone Groups (set of phonemes to be treated in the
same way, e.g. to which the same configuration):
e.g. with phones/unvoiced= C f h k p S s t x
all unvoiced phones can be referenced by writing
phones/unvoiced.

• Local Fitness Configuration (allows for sharing
of configurations between similar phone classes,

e.g. using the same configuration for all unvoiced
phonemes):

– classes to which to apply to (e.g.
phones/unvoiced):

– feature weights (state probability is computed
from weighted features), e.g.
duration, intensity, stress, pitch/mean,
pitch/contour, ...

• Transition Cluster (short–hand notation for all transi-
tions using the same configuration/weights):
classes/from, classes/to, config,
e.g. classes/from=phones/unvoiced ,
classes/to=phones/unvoiced,
config=transconf/unvoiced state that for all
transitions between unvoiced phonemes the same
configuration (transconf/unvoiced) shall be used.

• Transition Configuration (weights of the transitional
features):
weight/original (peer is original neighbor),
weight/pitch/level (pitch transition)

4.2. Unit Selection Analyzer

For comprehensive analysis of the search process the devel-
opment of an interactive analyzing tool has recently been
started(fig. 5).
It’s major purposes are to

• visualize the search (i.e. target specification, features
values of candidates, features of a specific transition,
n-best paths) allowing to quickly find out why which
units have been selected

• efficiently compare alternatives (for a given step, for a
sub-sequence)

• link to the database to easily

– show a given (suspect) unit within the original
database context



– disable/remove bad units discovered during an
analysis session

Figure 5: Interactive search analyzer. The trellis is visual-
ized, nodes show the feature values, transitions the tran-
sition score. Alternatives for sub-sequences can easily be
selected to allow for efficient comparison “by ear”.

4.3. Audio Processing

The audio processing sub-module of the Acoustic Synthe-
sis Module is the same for both the Triphone Synthesis
and the Diphone synthesis mode. It’s structure is shown
in fig. 4. Generally this module is configured at compile-
time for a specific synthesis method, e.g. a Speech Codec
Integrated Synthesis (e.g. AMR, SPEEX) or Cepstral Syn-
thesis. In either case first the pitch sequence has to be
decompressed, then the units are manipulated w.r.t. the
given prosodic objectives (for special cases these are, how-
ever, modified right before, especially plosives need spe-
cial treatment). With the exception of the cepstral synthe-
sis (which directly includes this feature) the concatenated
to-time-domain-converted signal modified by the (optional)
voice conversion before it is written to the output FIFO.

5. Evaluation Results
5.1. Text Preprocessing

Text Normalization There are currently no results avail-
able.

End-of-Sentence Detection There were 9 errors out of
500 sentences. All errors occured because our system
treated every colon as an end-of-sentence, which was not
the case in the reference sentences. For example
But let us be honest with ourselves: it would not allow us to
meet all of the goals that we have set.
was split into two sentences by our system.

Part-of-Speech Tagging The task here was to tag a text
of 100.000 words, but only about 10 percent (10.862 words)
were checked. The error rate was 4.7 percent. Table 1 de-
picts the most common confusions between the reference
category and the output of the POS tagger.
One mistake here is that in our system every “to” is tagged
as “TO”, but this tag should only be used if “to” precedes a
verb (VER or AUX).

reference hypothesis percentage
CON ADP 19.96
DET PRO 12.87
ADP TO 12.16
PRO DET 11.55

Table 1: Confusion of POS tags.

The error rate is higher than in our internal tests. One reason
therefore is a mismatch between the knowledge bases that
were used to generate the reference on the one hand and for
the training on the other hand. The reference was created
using the LC-STAR tags including features (case, gender,
number), but the system was trained using the tag set of the
Penn Treebank Project. These tag sets were then converted
by a script to be comparable, but the conversion is error
prone and cannot be performed automatically for all cases.
This results in a number of mismatches between reference
and tagger output, which increases the error rate.

Grapheme-to-Phoneme Conversion Three categories
were used in this test: common words (CW), geographic
locations (GL), and proper names (PN). Table 2 depicts the
phoneme and word error rates for these subtasks.

task PER (%) WER (%)
CW 5.6 25.0
GL 19.1 60.3
PN 18.2 55.9

Table 2: Phoneme (PER) and word error rate (WER) for the
three subtasks of the grapheme-to-phoneme conversion.

The results for the common words are worse than expected,
because in the runtime system a phonetic lexicon with
about 60000 entries is used. A more detailed analysis of
the errors showed that there are again (as in the first evalua-
tion) several mismatches between the reference and lexicon
transcriptions. For instance for the word advisor

id: (test_0026)
Scores: (#C #S #D #I) 9 0 0 1
REF: 4 d - v " ai - z 4 *
HYP: 4 d - v " ai - z 4 R
Eval: I

the reference is / @ d - v "aI - z @ /, but the lexicon
entry is / @ d - v "aI - z @ r /. This mismatch oc-
curs 23 times, which is about 10 percent of all phoneme
errors. Therefore, in the next evaluation a common lexi-
con should be used for both the runtime system (training
of the OOV routines) and the generation of the reference
transcriptions.

5.2. Prosody

The prosody generation module was not evaluated by the
2006 evaluation campaign.

5.3. Acoustic Synthesis

The overall synthesis result was dominated by major errors
in the database. Thus in this discussion we focus on typical



errors of the database and how they affected the synthesis
results. Algorithmic deficiencies, as far as the influence is
already known are also mentioned.
As a consequence from these results current work concen-
trates on the (1) improvement of the database segmenta-
tion and annotation process, (2) refinement of the selec-
tion method as w.r.t. sensible deficiencies, (3) develop-
ment/integration of features for rating concatenation eli-
gibility with show a high discriminative performance but
which are not necessarily suitable for (runtime) usage in
the target environment.

5.3.1. Impact of the Database
The major database related problems where

1. Wrong phonetic transcription, which leads to a wrong
segmentation (also of several neighboring units) and
in turn to unsuitable audio data.

2. Inadequate transcription, especially in the novel’s part,
where speech was extremely expressive (e.g. extreme
range of f0, slurring of phonemes, contraction of
words), leading to the same consequences as (1).

3. Bad segment bounds positioning leads to wrong fea-
ture values and (after selection) to an odd audio sig-
nal. Especially boundaries of plosives appeared to be
problematic (in the 1st place if no initial silence was
present)

4. Wrong/incomplete pitch-marking leads to wrong f0

features and –in some cases– to wrong resulting f0 af-
ter manipulation.

5. SAMPA phoneme set without extension was used, re-
sulting in segmentation errors in case of syllabic con-
sonants (i.e. l= and n= cannot be replaced, as it was
done, by @ l and @ n)

Several efforts are now undertaken to mature to manually
corrected db part and to improve the automatic consistency
and plausibility checking.

5.3.2. Impact of Unit Selection
Several weak areas of the runtime-unit-selection are known,
partially the implementation was just missing due to lack of
time (checking of the database consumed much more time
than planned), partially suitable methods still need to be
developed.

1. Selection (ranking) of alternatives for missing tri-
phones: There is currently no ranking of replacement
candidates (e.g. an A: context may be better substi-
tuted by an O: context than an i: context)

2. Several improvements dealing with plosives are neces-
sary (currently plosives are used without manipulation
due to the following problems):

(a) Intensity needs to be normalized (within the
burst) to allow a correct selection and manipu-
lation,

(b) Duration cannot be reasonably changed.

Both topics can only be solved by dividing plosives
into an initial silence and a burst part, which then can
be handled separately (TC–STAR did not allow this so
far, though)

3. To better deal with (undetected) problematic database
units more sophisticated concatenation features need
to be developed, even if their complexity allows their
use just for references purposes.

6. Conclusions
Siemens took part in the second evaluation campaign with
the text preprocessing module and the whole TTS system.
The results of the text preprocessing are not as good as ex-
pected. Main reason is the lack of common knowledge re-
sources like a lexicon and a tagged text for the training of
the POS tagger. This lead to two problems: (1) The ref-
erence transcriptions are different from the entries in our
internal lexicon. (2) For the training of the POS tagger the
Wallstreet Journal corpus was used which has a different
tag set. The conversion of this tag set to the reference set
caused several mismatches. The results of the evaluation of
the acoustic module were dominated by the errors in the
database (mainly wrong phonetical annotation and wrong
segmentation). This especially showed the need for (purely)
signal dependent transition features, which also ease the re-
jection of odd units. We hope that for the third evaluation
we will be able to use suitable knowledge bases which al-
low a clear assessment of the algorithms.
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