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Abstract

In this paper we describe MARIE, an Ngram-based statistical
machine translation decoder. It is implemented using a beam
search strategy, with distortion (or reordering) capabilities.

The underlying translation model is based on an Ngram ap-
proach, extended to introduce reordering at the phrase level.
The search graph structure is designed to perform very accu-
rate comparisons, what allows for a high level of pruning, im-
proving the decoder efficiency. We report several techniques for
efficiently prune out the search space.

The combinatory explosion of the search space derived
from the search graph structure is reduced by limiting the num-
ber of reorderings a given translation is allowed to perform, and
also the maximum distance a word (or a phrase) is allowed to
be reordered.

We finally report translation accuracy results on three dif-
ferent translation tasks.

1. Introduction
Statistical Machine Translation (SMT) is thought as a task
where each source sentencefJ

1 is transformed into (or gener-
ates) a target sentenceeI

1, by means of a stochastic process.
Thus, translation of a source sentencefJ

1 can be formulated as
the search of the target sentenceeI

1 that maximizes the condi-
tional probabilityp(eI

1|fJ
1 ), which can be rewritten using the

Bayes rule as:

arg max
eI
1

n
p(fJ

1 |eI
1) · p(eI

1)
o

(1)

wherep(fJ
1 |eI

1) represents the translation model andp(eI
1) is

the target language model.
This decomposition into two sources is commonly called

the source-channel approach. The argmax operation denotes
the search problem.

Regarding the translation model, the first statistical MT sys-
tems worked at the word level [1]. Among these first systems,
we find decoders following different search approaches: opti-
mal A* search [2], integer programming [3], greedy search al-
gorithms [4], [5], [6].

In the last few years, new systems tend to use sequences of
words, commonly called phrases, aiming at introducing word
context in the translation model. These systems model transla-
tion through a log-linear maximum entropy framework [7], that
makes it easier to introduce additional models.
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where feature functionshi are the system models (translation
model, language model, reordering model, ...), and weightsλi

are typically optimized to maximize a scoring function.
Different authors have shown how using phrase distortion

models, allowing for modelling phrase discontinuities, outper-
forms monotonous systems in some language pairs and under
reordering restricted conditions. These systems are forced to
restrict their distortion abilities because of the high cost in de-
coding time distortion implies. In [8], the decoding problem
with arbitrary word reordering is shown to be NP-complete.

Some decoders with reordering capabilities are described
in [9], [10]. Among the last systems, in [11] a free available
beam search phrase-based decoder with reordering capabilities
is described.

This paper addresses the decoding problem when allow-
ing reordering, under an Ngram-based translation model ap-
proach [12]. It is organized as follows. Section 2 introduces
the particularities of the SMT modelling that underlies the de-
coder, section 3 describes the decoder characteristics. Some
experiments testing the decoder are reported in section 4. Fi-
nally, section 5 presents some conclusions and outlines further
research.

2. Ngram Translation Model
According to equation 1, translation can also be seen as a
stochastic process that maximizes the joint probability:

arg max
eI
1

{ p(eI
1, f

J
1 )} (3)

The Translation Model can be thought of a Language
Model of bilingual units (here called tuples). These tuples de-
fine a monotonous segmentation of the training sentence pairs
(fJ

1 , eI
1), into K units (t1, ..., tK ).

Figure 1 shows an example of tuples extraction from a word
to word aligned sentence pair.

The Translation Model is implemented using an Ngram lan-
guage model (B), (withN = 3):

p(e, f) = Pr(tK
1 ) =

KY
k=1

p(tk | tk−2, tk−1) (4)

Through the log-linear approach of equation 2, the decoder
extends the modelling with four feature functions (defined as
model probabilities):



• A translation model computed using the IBM1 lexicon
probabilities in both directions (I):

Pr(tK
1 ) =

KY
i=1

pM1(ek | fk)λstpM1(fk | ek)λts (5)

where each model weight (λst andλts) can be optimized
to maximize a scoring function.

• An Ngram target language model (T), (withN = 3):

Pr(eI
1) =

IY
i=1

p(ei | ei−2, ei−1) (6)

• An standard word penalty used to compensate the de-
coder preference for the shortest translations (P):

Pr(eI
1) = exp(I) (7)

• A word distance-based reordering model (R):

Pr(tK
1 ) = exp(−

KX
k=1

dk) (8)

wheredk is the distance between the first word of the
Kth tuple (unit), and the last word +1 of theK − 1th

tuple (distances are measured in words referring to the
units source side).

New models can be introduced extending the sum in equa-
tion 2 with additional features.
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Figure 1:Tuples extraction given a word to word aligned sen-
tence pair. The segmentation of each bilingual sentence pair is
carried out by using only the Viterbi word to word alignment,
see [13].

The decoder behaves as a phrase-based SMT decoder, when
extracting phrases instead of tuples and using a phrase-based
translation model instead of an Ngram-based translation model.

3. Decoder
In SMT decoding, translated sentences are built incrementally
from left to right in form of hypotheses, allowing for disconti-
nuities in the source sentence.

To find the optimal path, a Beam search algorithm with
pruning is used. Beam search algorithms are widely used in
SMT decoding as they offer good possibilities to adjust the
trade-off between quality and efficiency.

The search is performed by building partial translations (hy-
potheses), which are stored in one or several lists. These lists are

pruned out according to the accumulated probabilities of their
hypotheses. Worst hypotheses with minor probabilities are dis-
carded to make the search feasible.

A main problem when building an SMT decoder is the fact
that the search space must be pruned. Some beam-based de-
coders use only one list, so all hypotheses compete to stay alive
after pruning the list. This approach greatly relies on a fair
comparison among hypotheses, since decoders tend to bias the
search towards those translations with higher probabilities dur-
ing the first stages (which are not always the best, but just better
scored to survive the pruning process).

To avoid this problem, a heuristic function can be used to
estimate the future cost of each partial translation. This al-
lows for discarding good hypotheses that do not have an es-
timated good future path, transforming the beam search into
an A* search. A drawback of this solution is the difficulty to
find a good heuristic function with acceptable computing cost
(see [2], [10] and [11]).

Different lists can be used instead of only one, which
helps to fairly compare hypotheses. Commonly, hypotheses are
stored in different lists depending on the number of source or
target words already covered. Our decoder implements a multi-
list approach without heuristic function.

3.1. Core Algorithm and Search Graph Structure

The Beam search algorithm is here outlined:
The search begins adding an initital state, where no source

words are covered (translated) yet.
New states (hypotheses) are expanded by adding tuples,

translating some source uncovered words. Every hypothesis
uses a covering vector indicating wich source words have al-
ready been translated (for instance, a hypothesis with a covering
vector set to ’11000’ indicates that the hypothesis has covered
the first two words of the source sentence).

Each new expansion is allowed to cover any word positions
in the source sentence (restricted to consecutive positions not
covered so far), while the tuple target words are added sequen-
tially to the target sentence. This way the target sentence is built
monotonously.

The cost of each new state is the result of adding the cost
of the predecessor state to the cost derived from the different
features used as models.

Table 1 shows the information contained in each state.

A link to the predecessor state
The lastN1 tuples
The lastN2 target words
Covering vector
Positions covered by the last tuple
The cost so far

Table 1:Every hypothesis is represented by six fields.Ni are set
according to the Ngrams used for the translation (B) and target
(T) models.

Figure 2 shows an example of the search graph structure. It
can be decomposed into three levels:

• Hypotheses. In figure 2, represented using ’*’.

• Lists. In figure 2, the boxes with a tag corresponding to
its covering vector. Every list contains an ordered set of
hypotheses (all the hypotheses in a list have translated
the same words of the source sentence).



• Groups (of lists). In figure 2, delimited using dotted
lines. Every group contains an ordered set of lists, cor-
responding to the lists of hypotheses covering the same
number of source words (to order the lists in one group
the cost of their best hypothesis is used). When the
search is restricted to monotonous translations, only one
list is allowed on each group of lists.

The search loops expanding available hypotheses. The ex-
pansion proceeds incrementally starting in the group of lists
covering 1 source word, ending with the group of lists cover-
ing J − 1 source words (J is the size in words of the source
sentence).

Figure 2:Search graph corresponding to a source sentence with
four words. The graph is constrained by a distortion limit (m =
1), and a maximum number of reorderings per sentence (j = 1).
Details of constraints are given in following sections.

Among the hypotheses stored in the last group (covering
the whole words of the source sentence), the hypothesis with
the lowest cost (highest probability) is selected and printed out.

3.2. Pruning the search

To reduce the search space, those hypotheses that agree on the
lastN1 tuples, the covering vector and the lastN2 target words
are recombined (N1 andN2 are set according to the Ngrams
used for the translation (B) and target (T) models), keeping only
the best scored hypothesis. Recombination is a risk-free way to
prune the search space, as those states recombined could not be
distinguished in future steps of the search.

When expanding each new list, only the best hypotheses are
expanded: those hypotheses with best scores (histogram prun-
ing, b); with a score within a margin (t) given the best score in
the list (threshold pruning).

The same pruning strategies are used when expanding the
lists of each group: those lists with best scores (histogram prun-
ing, B); with a score within a margin (T ) given the best score
in the group (threshold pruning). To score a list, the cost of its
best hypothesis is used.

When allowing for reordering, the decoder suffers from the
apparition of a huge amount of lists (an upper bound is2J ,
whereJ is the number words of the source sentence). Not only
the states, but the lists of the graph structure need to be pruned
out. In order to reduce the number of lists, two constraints are
used, detailed in the next subsection.

3.3. Reordering Capabilities

A reordering strategy is also key to avoid the search combina-
tory explosion problem when allowing for distortion. In [14],
a comparison among different reordering constraints is shown
(namely ITG and IBM constraints).

Our decoder implements two distortion constraints in order
to reduce the lists of the graph structure:

• A distortion limit (m). A source word (phrase or tuple)
is only allowed to be reordered if it does not exceed a
distortion limit, measured in words.

• A reorderings limit (j). Any translation path is only al-
lowed to performj reordering jumps.

4. Experiments
In this section, different experiments are reported to test the per-
formance of the decoder in terms of translation accuracy (using
BLEU and WER). The first subsections explain the framework
on which the experiments were performed.

4.1. Corpus

Experiments have been carried out using two databases: the TC-
Star1 corpus (Spanish-English) and the IWSLT 2004 BTEC2

corpus (Chinese-English). Results with TC-Star are reported
using the text version (FTE) of the corpus used in the TC-Star
SLT first evaluation.

Tables 2 and 3 show the main statistics of the used data,
namely number of sentences, words, vocabulary, and mean sen-
tence lengths for each language.

Set Lng Sent Wrds Vocab Mean

eng 33,379,333 104,975 27.3trn
spa

1,223,443
34,794,006 168,685 28.4

eng 26,002 3,208 25.8tst
spa

1,008
25,658 3,937 25.4

Table 2:TC-Star Corpus. Two references are available for the
test side of both languages.

Set Lng Sent Words Vocab Mean

eng 188,935 8,191 9.4trn
chi

20,000
182,904 7,643 9.1

eng 4,187 2,496 8.4tst
chi

500
3,794 893 7.6

Table 3:BTEC Corpus. For the English test side of the corpus,
16 different references are available.

4.2. Training the Models

We used giza++ to perform the word alignment of the whole
training corpus, and refined the links by the union of both align-
ment directions [10]. Afterwards we segmented the bilingual
sentence pairs of the training set, extracting translation units
(tuples) using the extract-tuples method described in [13].

1www.tc-star.org
2www.slt.atr.jp/IWSLT2004



The vocabulary of tuples was pruned out using different
pruning techniques, mainly based on limiting bilingual units
to those: a) consisting on the N best translation candidates; b)
occurring a minimum number of times in the train set; c) not
exceeding a size threshold (number of words on each side of
the unit); d) not exceeding a fertility threshold (difference in
source-side and target-side number of words).

This pruning benefits the estimation of the translation
model and improves the efficiency of the search.

To train the Ngram models, we used the SRILM toolkit
[15]. The type of discounting algorithm used was the modi-
fied Kneser-Ney combining higher and lower order estimates
via interpolation.

The weightsλi for the log-linear combination of models
were set in order to minimize the BLEU score [16], using the
simplex algorithm.

4.3. Results

Table 4 shows the results obtained by the decoder on the Chi-
nese to English translation direction using the BTEC corpus,
and both translation directions results using the TC-Star corpus.

Task BLEU WER

chi2eng mon 0.331 51.5
chi2eng reord 0.363 49.68

spa2eng mon 0.545 34.4
eng2spa mon 0.472 41.4

Table 4: The first two rows show the results of the Chinese to
English translation task (in the first row the decoder performed
monotonous translations, in the second row reordering was al-
lowed). The last two rows show the decoder results performing
monotonous translations for both translation directions.

The use of distortion is only recommended when required
by the language pairs. For instance, the Spanish-English dis-
tortion requirements are limited to short-distance reorderings,
which are well captured within the bilingual units (tuples or
phrases).

5. Conclusions and Further Work

We described MARIE3, a decoder for Ngram-based Statisti-
cal Machine Translation systems with reordering capabilities,
which allows to easily incorporate new models by using a log-
linear approach.

Despite the preference for monotonous translations of the
Ngram-Based translation models, results show how reordering
can also be applied.

The search graph structure of the decoder guides to very
accurate hypotheses comparisons, improving the decoder effi-
ciency through very high levels of pruning.

The combinatory explosion of the search space that distor-
tion implies is reduced by the use of reordering constraints.

Further work is envisaged to improve the decoder perfor-
mance by better pruning out the search space, in terms of re-
ordering contraints.

3The Decoder can be free downloaded from the internet address:
http://gps-tsc.upc.es/veu/soft/soft/MARIE.
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[13] J. Crego, J. Marĩno, and A. de Gispert, “Finite-state-based
and phrase-based statistical machine translation,”Proc. of
the 8th Int. Conf. on Spoken Language Processing, IC-
SLP’04, pp. 37–40, October 2004.

[14] R. Zens, F. Och, and H. Ney, “Improvements in phrase-
based statistical machine translation,”Proc. of the Human
Language Technology Conference, HLT-NAACL’2004, pp.
257–264, May 2004.

[15] A. Stolcke, “Srilm - an extensible language modeling
toolkit,” Proc. of the 7th Int. Conf. on Spoken Language
Processing, ICSLP’02, September 2002.

[16] K. Papineni, S. Roukos, T. Ward, and W. Zhu, “Bleu: a
method for automatic evaluation of machine translation,”
IBM Research Division, Thomas J. Watson Research Cen-
ter, Tech. Rep. RC22176 (W0109-022), 2001.


