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Abstract
This paper shows the common framework that underlies the

translation systems based on phrases or driven by finite state
transducers, and summarizes a first comparison between them.
In both approaches the translation process is based on pairs of
source and target strings of words (segments) related by word
alignment. Their main difference comes from the statistical
modeling of the translation context. The experimental study has
been carried out on an English/Spanish version of the VERB-
MOBIL corpus. Under the constrain of a monotone composi-
tion of translated segments to generate the target sentence, the
finite state based translation outperforms the phrase based coun-
terpart.

1. Introduction
Statistical Machine Translation (SMT) is thought as a task
where each source sentence fJ1 is transformed into (or gener-
ates) a target sentence eI1, by means of a stochastic process. The
generative model explains how the process is carried out. Thus,
translation of a source sentence fJ1 can be formulated as the
search of the target sentence eI1 that maximizes the conditional
probability p(eI1jf

J
1 ), which can be rewritten using the Bayes

rule as:

argmax
eI
1

�
p(fJ1 je

I
1) � p(e

I
1)
	

(1)

where p(fJ1 je
I
1) represents the translation model and p(eI1) is

the target language model.
Regarding the translation model, the first statistical systems

worked at the word level [1], viewing the translation task as a
process of translating words and reordering them to build the
target sentence.

In the last few years, new systems tend to use sequences
of words, commonly called phrases, trying thus to introduce
the word context in the translation model, until now only taken
into account in the language model. Among these systems, we
find those able to deal with phrases extracted from word oc-
currences [2], phrases syntactically motivated [3], and from
a joint probability model [4]. Results show a consistently bet-
ter performance of these approaches with respect to single word
based [5], especially when using phrases extracted from word
occurrences.

However, translation can also be seen as a stochastic pro-
cess maximizing the joint probability p(e; f), typically imple-
mented by means of a Finite-State Transducer (FST):

argmax
eI
1

fp(eI1; f
J
1 )g (2)

This approach comes from the speech-to-speech translation
task, where in an integrated architecture this joint probability

is maximized together with the acoustic model p(xjf) (x being
the input acoustic signal).

Despite the theoretic similarity between both approaches
(as both maximizations are mathematically equivalent), the ac-
tual implementations do produce certain differences that we ex-
plore in this paper. By using a unified framework with a practi-
cally equivalent search algorithm, a comparison of these models
is presented, highlighting their advantages and disadvantages in
a real translation task.

The paper is organized as follows. Section 2 describes
briefly the particularities of the evaluated SMT systems, sec-
tion 3 introduces the evaluation framework used to carry out
the comparison, whereas the results obtained are discussed in
section 4. Finally, section 5 concludes and outlines further re-
search.

2. Translation Model
Before presenting an overview of the Finite-State-based and
Phrase-based approaches (hereinafter referred to as FSB and
PB, for simplicity), an important distinction must be made be-
tween phrases and tuples, as they constitute the core unit from
which these systems learn the translation model.

2.1. Phrase and Tuple definition

Given a sentence pair and a corresponding word alignment, a
phrase (or bilingual phrase) is any pair of m source words and
n target words that satisfies two basic constraints [2]:

1. Words are consecutive along both sides of the bilingual
phrase.

2. No word on either side of the phrase is aligned to a word
out of the phrase.

FSB systems use a particular case of these phrases, called
tuples. Given a parallel sentence, the set of tuples can be defined
as the subset of the phrases that fulfills the following conditions:

1. It induces a monotonous segmentation of the pair of sen-
tences.

2. Each tuple cannot be decomposed into smaller phrases
without violating the previous constraint.

Note that this subset is unique under these conditions, that
is, there is only one possible set of tuples given a parallel sen-
tence.

The example in Figure 1 shows the phrases and tuples ex-
tracted from a given pair of aligned source/target sentences. As
it can be seen, whereas the sentence pair can be segmented
into multiple sets of phrases (ex: [p1+p6+p8+p10+p12],
[p1+p7+p11], [p2+p9], etc.), only one segmentation is possible
when extracting tuples (ex: [t1+t2+t3+t4]).
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t1 : p1 : i must # debo
p2 : i must buy # debo comprar
p3 : must # debo
p4 : must buy # debo comprar
p5 : must buy a # debo comprar un

t2 : p6 : buy # comprar
p7 : buy a # comprar un

t3 : p8 : a # un
p9 : a big car # un coche grande
p10: big # grande

t4 : p11: big car # coche grande
p12: car # coche

Figure 1: Tuple and Phrase extraction given an aligned sen-
tence pair. Only phrases of three or less words per side are
shown.

To build phrases from a given alignment, the extractBP al-
gorithm has been used [6]. The tuples extraction algorithm is
here outlined:

1. Initially, every link is a tuple.

2. If a word is aligned to NULL (ie. the word “I” in the
example of figure 1). It is added to the next tuple (if it is
not possible, the previous tuple is used to be added to).

3. If there is a crossing in the tuples sequence (ex: big #
grande, car # coche), the tuples generating the crossing
are joined. Step (3) is repeated until no crossings are left.

This method preserves the monotonicity for both languages
in the tuples.

2.2. Finite-state-based Translation

Finite-state-based Translation Systems model the translation di-
rectly as a composition of tuples. The system learns translations
from this bilingual units that are extracted from the word align-
ments. This way the context used in the translation model is
bilingual, it not only takes the target sentence into account, but
both languages linked in tuples.

The translation is achieved by a string composition of the
most probable sequence of tuples.
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p((e; f)nj(e; f)n�x+1; :::; (e; f)n�1)g (4)

The n-th tuple of a sentence pair is here referred as (e; f)n.
The translation model can be seen here as a language

model, where the language is composed by tuples [7].

2.3. Phrase-based Translation

Phrase-based Translation Systems incorporate the word context
into the phrases. Thus, they learn translations not only for single

words, but for whole phrases. Translating a given source sen-
tence is accomplished in three steps: segmentation into phrases,
translation of the phrases and composition of the target sen-
tence. The search is carried out by the maximization of the
equation:

ê
I
1 = argmax

eI
1

fPr(eI1) �

KY

k=1

p( ~fkj~ek)g (5)

where ~fk , ~ek refer to phrase k in each language.
This search can be performed without allowing phrase re-

ordering in the target sentence (monotone decoding), or allow-
ing phrase reordering (non-monotone decoding) [2].

Even though non-monotone phrase-based decoders offer
better performance than monotone decoders [2], the monotone
constrain defines an equivalent framework for comparing the
way PB and FBS systems model translation. In this paper, a
monotone search has thus been implemented.

On the other hand, different language models have been
proposed and evaluated for the phrase-based approach [2] [8].

2.4. Key issues

Despite the initial mathematical equivalence of both ap-
proaches, the implementation of the systems produce differ-
ences, mainly found on the structure of phrases and tuples, and
how they are used to model the translation.

Regarding the translation model, the FSB approach uses
word context through the maximization of the probability of a
sequence of tuples. This way, the context appears not only be-
cause words are joined inside tuples (sequence of words), but
also connected as a sequence of tuples, modeled by an Ngram-
style memory for translation (see equation 4). In turn, the PB
approach learns this context by joining words in phrases. The
connection between phrases is then done taking both the trans-
lation probabilities and a language model of the target into ac-
count (see equation 5).

Another remarkable difference results from the phrase/tuple
extraction procedure. Whereas the FSB approach relies on a
small set of tuples (derived from just one segmentation per sen-
tence), expecting them to accurately focus on the translation
process, PB systems generate a huge set of phrases, thus relying
on statistics to highlight the most appropriate ones by frequency.

Finally, in the PB approach it is possible to introduce large
complementary monolingual data to better estimate the target
language model (when available), unlike in the FSB approach
as currently formulated. However, in this work we have used
the same corpus to learn translation and language models.

3. Evaluation Framework
To perform the experiments, we have used the VerbMobil
database in English, and its translation into Spanish generated
in the framework of the LC-Star project (IST-2001-32216).

3.1. Corpus

The corpus is set up by the transcription of spontaneous dialogs
in the appointment and meeting-planning domain, normalized
to leave punctuation marks out, and preprocessed categorizing
date and time expressions (in the training corpus 2746 time ex-
pressions and 897 date expressions were substituted by a unified
tag).

Table 1 shows the main statistics of the used data, namely
number of sentences, words, vocabulary, and maximum and



mean sentence lengths for each language, respectively.

VMobil sent. words voc. Lmax Lmean

Train set
English 207,730 3,138 66 7.4
Spanish

27,995
199,915 4,848 66 7,1

Test set
English 20,585 1,258 57 10
Spanish

2,059
19,855 1,704 60 9.6

Table 1: VerbMobil corpus statistics.

While the English test set contains 138 words that have not
occurred in the training, in Spanish we have 236 unseen words.

Table 1 shows the different sizes of the Spanish and English
vocabularies in the corpus. It is remarkable the bigger size of
the Spanish vocabulary due to the inflectional characteristic of
Spanish, common to all Romance family languages.

3.2. Word alignments

The word alignment has been carried out using GIZA++ [9].
Sentences have been aligned in both translation directions. Af-
terwards, the combination of source-target and target-source
alignments (Union) has been calculated [6].

Table 2 shows the total number of phrases and tuples ex-
tracted from the corpus and the number of different items (vo-
cabulary size), given the input alignment and extraction method.

Alignment Tuples VocTpl Phrases VocPhr

spa2eng 218,071 18,006 569,563 216,536
eng2spa 201,882 20,085 607,474 237,671
union 194,062 18,029 568,773 217,196

Table 2: Number of tuples and phrases (and their vocabulary
sizes) in the training corpus.

As expected, the number of phrases is bigger than the
number of tuples. It is also remarkable the ratio between the
items and their vocabulary (�12:1 for the tuples, �2:1 for the
phrases). A very high percentage of phrases have only appeared
a few times in the corpus. Table 3 shows the percentage of
phrases and tuples appearing only once and twice in the corpus.

% Tuples Phrases

Singletons 68.1 82.1
Doubletons 10.6 8.3

Table 3: Percentage of singletons and doubletons among the
total number of tuples and phrases, for the spa2eng alignment.

3.3. Language models

Different language models have been tested for the PB ap-
proach. All of them have been implemented using the CMU-
Cambridge Language Modeling Toolkit. The models are:

1. A trigram model calculated for all the words ei of the
target sentence (SentLM).

Pr(eI1) =

IY

1

p(ei j ei�2; ei�1) (6)

2. A trigram model calculated for the first word of each
phrase ~ek (LinkLM) [8].

Pr(eI1) = Pr(~eK1 ) =

KY

k=1

p(ek1 j ek1�2; ek1�1) (7)

3. A model consisting on the conditional probability of
each phrase ~ek given its previous word (PhraseLM) [2].

Pr(eI1) = Pr(~eK1 ) =

KY

k=1

p(~ek j ek1�1) (8)

3.4. Translation models

For the PB system, the translation model probabilities have been
calculated using the relative frequencies of the phrases in the
training corpus.

Pr( ~f j~e) =
N( ~f ; ~e)

N(~e)
(9)

For the FSB system, the translation probabilities are calcu-
lated using the tuples extracted from the different word align-
ments as a N-gram language model (N = 3). We have also
used the CMU-Cambridge Language Modeling Toolkit to esti-
mate the probabilities.

3.5. Search

The maximization problem in equations 4 and 5 is solved using
an efficient monotone search, implemented as a beam search
using dynamic programming. The search algorithm used in the
phrase-based approach is described in [2].

The algorithm for the FSB approach defines the quantity
Q(j) as the maximum probability of a phrase sequence that
covers positions 1 to j of the source sentence. Q(J + 1) is
the probability of the optimal translation. $ is the boundary
sentence marker:

Q(0) = 1 (10)

Q(j) = max
0�j0<j;~e

fQ(j0) � p(f j
j0+1

; ~e)g (11)

Q(J + 1) = max fQ(J) � p($; $)g (12)

4. Results
To evaluate the translation task, we have used the scores WER
and BLEU (interpolating unigrams, bigrams, trigrams and four-
grams) with only one reference.

Table 4 and table 5 show the results obtained for each ex-
periment in both translation tasks using the different approaches
and language models. From all four alignments (both direc-
tions, plus union and intersection), only those producing the
best results are shown.

Alignment Model WER BLEU

giza++ union PhrsLM 32.55 0.4640
giza++ union SentLM 32.96 0.4532
giza++ union LinkLM 34.98 0.4437
giza++ spa2eng FSB 31.50 0.4981

Table 4: Spanish to English translation task.



Alignment Model WER BLEU

giza++ union PhrsLM 38.18 0.4566
giza++ union SentLM 38.35 0.4531
giza++ union LinkLM 39.83 0.4438
giza++ eng2spa FSB 35.70 0.5038

Table 5: English to Spanish translation task.

Four results are highlighted:

� The Spanish to English translation task achieves consis-
tently better results than the English to Spanish transla-
tion task. This can be explained by the bigger size of the
Spanish vocabulary.

� When comparing the different language models pro-
posed in the PB approach, the LinkLM rates the worst,
as it only takes one trigram into account. A slight pref-
erence for the PhrsLM language model instead of the
SentLM is found.

� Comparing the approaches FSB and PB, consistent bet-
ter results are achieved by the FSB approach.

� Regarding the alignments, the FSB approach achieves
the highest performance using one-to-many alignments,
specially for the alignment direction matching the trans-
lation direction. However, the PB approach achieves op-
timal performance with the alignment resulting from the
union, usually generating more links but less accurate.
This strategy turns harmful for the FSB approach, as it
tends to produce much longer tuples that might overfit to
training data.

Except for the PhrsLM and SentLM comparison, the rest
are over the �0; 6 threshold of the confidence margin (given
the number of words in the test). All results obtained with the
BLEU score correlate with WER measure.

It is worth mentioning the use of only one reference to cal-
culate WER and BLEU scores. This fact leads to a worse per-
formance score than it is real, as described in the example of
table 6, where although a good translation has been produced,
the score is as high as WER = 40%. These sentences are
extracted from the Verbmobil corpus.

Source te va bien el lunes
Target REF is monday fine for you
Translation does monday suits you

Table 6: Example of correct translation different from the refer-
ence.

5. Conclusion and Further work
Under the monotonicity restriction of the decoder algorithm
(see section 2), the FSB approach outperforms the PB approach
in both translation tasks (see tables 4 and 5), specially when
translating from English to Spanish, where the bigger vocabu-
lary size of the target language (Spanish) makes the task harder.

It seems that the PB approach does not benefit from the
huger generation of phrases before the translation modeling. By
estimating from a smaller but more accurate set of tuples, the
FSB approach is able to better model the translation task. The

different use of context might also explain this difference in per-
formance. However, this should be confirmed when using other
corpora, expanding the scope of the evaluation framework.

As introduced in 3, the current FSB approach is restricted
to the monotonicity condition. Two extensions of this approach
want to be investigated in future work to overcome this restric-
tion:

� Introducing a word reordering scheme inside the tuple
[10]. The reordering would be learned in the tuples ex-
traction process, and used after the decoding process.

� Using a language model in the target sentence, to help
the translation model when a translation probability can
only be calculated using a unigram. That is, when the
translation probability depends only on one tuple.

argmax
e

fp(e; f) � p(e)g (13)

These extensions of the FSB approach would allow for a
comparison of the PB and FSB approaches under a new evalua-
tion framework using a non-monotone decoder.
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