Including Dynamic and Phonetic Information in Voice Conversion Systems
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Abstract

Voice Conversion (VC) systems modify a speaker voice
(source speaker) to be perceived as if another speaker
(target speaker) had uttered it. Previous published VC
approaches using Gaussian Mixture Models [1] performs
the conversion in a frame-by-frame basis using only spec-
tral information. In this paper, two new approaches are
studied in order to extend the GMM-based VC systems.
First, dynamic information is used to build the speaker
acoustic model. So, the transformation is carried out ac-
cording to sequences of frames. Then, phonetic informa-
tion is introduced in the training of the VC system. Ob-
jective and perceptual results compare the performance
of the proposed systems.

1. Introduction

Voice Conversion (VC) systems modify a speaker voice
(source speaker) to be perceived as if another speaker
(target speaker) had uttered it. Applications of VC sys-
tems can be found in several fields, such as TTS (text-
to-speech systems) customization, automatic translation
keeping speaker’s voice individuality [2], education tools
for foreign language learning [3], medical aids to improve
the voice of people with speech impairments [4] and in
the entertainment field [5].

The goal of this paper is to build a VC system as a
post-processing block for a TTS, in order not to have to
produce and store several speech databases, one for each
speaker. So, the amount of training data is not a severe
problem. Only high quality is required.

Previous approaches to VC have assumed the glottal
flow + vocal tract model for speech production, learn-
ing a mapping function between source and target speak-
ers for vocal tract features and predicting the converted
residual signal from the vocal tract [1]. An already pro-
posed mapping function is based on GMM as a model
for joint source and target acoustic space. To estimate
the GMM aligned source-target feature vectors are use.
GMM-based systems work frame by frame, using only
spectral information to learn the mapping and transform
voices. In this paper the following topics are studied, in-
troducing two new approaches to vocal tract conversion:

e The effects of including dynamic characteristics
in the acoustic model used to build local vocal
tract mapping functions. For this reason, GMM-
based systems are extended to HMM-based sys-
tems, which can model dynamic characteristics.

e The effects of including phonetic information in
the learning of the mapping function and in the
transformation. The learning will be carried out in
an unsupervised way by CART decision trees.

The outline of this paper is as follows. In section 2
a new approach based on HMM is introduced. Then, in
section 3 it is explained how to apply a CART decision
tree to build a VC system. Finally, in section 4 the results
are discussed and conclusions can be found in section 5.

2. HMM-based voice conversion

Previous GMM-based systems work in a frame-by-frame
basis. It means that to convert one frame the informa-
tion about past and future frames is not relevant. This
is a simplification of the real speech production mecha-
nism. Our propose is to include dynamic information in
the voice conversion task. HMM are well-known models
which can capture the dynamics of the training data using
states. A HMM can model the probability distribution of
any feature vector, according to its actual state, and also
it can model the dynamics of sequences of vectors with
transition probabilities between states.

The model parameters (a;;, b;(x), 7;), where a;; in-
dicates the transition probability matrix, b;(x) the emis-
sion probability function of the ¢¢h state and 7; the initial
probability of the ith state, can be estimated using the
Baum-Welch algorithm.

In this paper, all the studied HMM are ergodic, i.e.
all the states are connected, and the emission probabil-
ity function for each state is a Gaussian function. LSF
parameters have been used as a vocal tract features.

The block diagram of a HMM-based VC system is
presented in figure 1. In the training step, a HMM is es-
timated from training data, and then a conversion func-
tion is calculated for each state. In the transforming step,
HMM is used twice. First, source data is segmented
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Figure 1: HMM-based VC system block diagram.

according the HMM states. Then, each frame is trans-
formed applying the state-dependent conversion function.

2.1. Source HMM-based system

The basic idea of this system is to model the dynamics
of the source speaker with an ergodic HMM. The transi-
tion probabilities of this model will be used as dynamic
characteristics in the conversion. This system is similar
to the one propose in [6], but using continuous transfor-
mation functions in order to avoid spectral jumps in the
converted features that, as it was reported, degrades the
quality of the transformed speech.

The steps for training the conversion function are the
following. First, a source HMM is estimated from source
data. Then, using the estimated HMM, source training
vector sequences are segmented according to the optimal
state path (using Viterbi search). All the vectors, with
their target alignments, are collected for each state, and N
(number of states) joint Gaussian functions are estimated.
Finally, regressing the function for each state we have:

Fy(z) = p¥ + SV (x — i) (1)

as a conversion function, where s indicates the state, x
and y aligned source and target vectors, and y and X
means and covariance matrices. To transform a new se-
quence, we need to segment it according to the source
HMM. Then, the conversion function of each state is ap-
plied to each state parameters.

2.2. Joint HMM-based system

As it has been previously done with GMM systems, we
introduce joint information in order to allocate the dis-
tribution functions more judiciously, and also to use both
source and target dynamic information. So, using aligned
source-target features vectors a joint HMM is estimated.
Like in joint GMM, there is no need of an extra step to
calculate the mapping function for each state. Since there
is a joint Gaussian per state, we can calculate the regres-
sion function straightforward.

Once the joint HMM is estimated, there are two dif-
ferent ways of transforming new vectors. In method A,
the new sequence can be segmented according to the op-

timal state path s*:

s* = argmax p(x,s/A) )

s" = argmax p(x/s, A)p(s/A) ©)

where A = (a,j, b;i(x), ;) ¢ = 1...N, for a HMM with
N states. Then, as in source HMM, each vector is trans-
formed according to its segmentation state. Note that now
transition probabilities take into account not only source
speaker, but also target speaker information.

Another way of transforming a new sequence,
method B, is to include the regression in the search of
the optimal path.

*

s* = argmaxp(y,x,s/\) “
~ argmaxp(y,x,s/A) 3)
~  argmaxp(y/x,s, \)p(x/s, A\)p(s/A) (6)

where y indicates the transformed frame. We have ap-
proximated the solution using the transformed frame in-
stead of the target frame, which is unknown. Although a
priori the transformed frame is also unknown, the decom-
position 6 allows to compute it applying the regression
function of the state s to the source frame. The equation
6 can be easily solve using dynamic programming.

3. CART-based voice conversion

Previous GMM-based systems work with spectral fea-
tures to estimate the conversion function and to transform
new source spectral vectors. In this section, the inclu-
sion of phonetic information for each frame, such as the
phone, a vowel/consonant flag, point of articulation, man-
ner and voicing, is studied. Note that all this information
is available in a TTS, so its inclusion in the conversion
system is straightforward.

To estimate the mapping function a CART decision
tree has been used. It is based in the idea that the acous-
tic space of both speakers is organized in acoustic classes,
and a conversion function can be estimated for each class.
Using GMM or HMM, we only have spectral information
to identify the classes. But using decision trees we can
also use phonetic information. The tree extracts, at each
splitting step, overlapping regions of the acoustic space
that can be represented by only one acoustic class, mod-
eled by a joint probability function.

The procedure to grow the tree is as follows. A
GMM-based VC system with one component is esti-
mated from a training data set for the parent node (the
root node in the first iteration), and an error index for all
the elements of a validation data set is calculated. The
error index used is:
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where x,,, ¥y, and g, are the source, target and con-
verted mth frames respectively, and D(-) indicates an In-
verse Harmonic Mean Distance [7] calculated as:

D(x,y) = | > e (@) —y@)>  ®
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with w(0) = 0, w(P + 1) = 7 and w(p) = z(p) or
w(p) = y(p) so that ¢(p) is maximized (p is the vec-
tor dimension). The features used are LSF. Using this
distance measurement we weight more the mismatch in
spectral picks than the mismatch in spectral valleys.

Then, all the possible question of the form “phonetic
property n=value” are evaluated, and two child nodes are
populated for each question. For each child node, a GMM
with one component is estimated, and the error index
for the vectors of the validation set corresponding to this
child node is calculated. The decision to grow the tree is:
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where elem.pq14 indicates the number of spectral vectors
of the validation set belonging to the child node. Only
when this decision rule is positive and the number of
training frames is higher than 25 this node is a candidate
to be split with this question. At each iteration, the node
with the decision rule with higher value for any question
is split according to that question. The tree is grown until
there is no node candidate to be split.

To transform new source vectors, they are classified
into leafs according to their phonetic features by the de-
cision tree. Then, each vector is converted according to
the GMM-based system belonging to its leaf.

Taking into account that phonetic information may be
not enough to split all the acoustic classes, an alternative
is to model the final leafs with more than one Gaussian.
So, once the tree has been grown, for each final leaf a
GMM with a number of components from 1 to 5 is esti-
mated, until the error in the validation set increases.

4. Experiments

The corpus used for the experiments was built to gen-
erate a Spanish unit selection TTS system. Speech and
laringograph signals were recorded in an acoustically iso-
lated room. A sample frequency of 32kHz and 16 bits per
sample were used. For this study, signals were decimated
to 8kHz. The corpus has been segmented (manually su-
pervised) into phones. Two speakers, one male and one
female, read the same corpus.

The frame alignment used is lineal inside each
phoneme. Only phonetic transcription matching sen-
tences without pauses are used.

4.1. Objective Tests

The performance index used for test is:
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where the distance function is defined in equation 8. It
canbe seenthat )0 < P < 1.

Three sets of experiments have been carried out: us-
ing 5 sentences (about 1,500 aligned vectors), using 20
sentences (about 7,100 aligned vectors), and using 100
sentence (about 38,500 vectors) for the training. For
validation 5, 20 and 20 different sentences were used.
In figure 2 and figure 3 the results of systems based
on GMM, source HMM, joint HMM method A and B,
CART and CART allowing more than one Gaussian per
leaf (CART+) are presented for the three sets of train-
ing data, converting the male speaker to the female and
vice-versa. To estimate GMM and HMM systems sev-
eral number of components and states have been tested.
In the figures it is indicated the optimal number. Also,
it is indicated the number of final Gaussians for CART
systems.

When few training data is available GMM, source
HMM and both CART’s, performs in a similar way. But
when the amount of training data increases, CART sys-
tems outperform GMM and source HMM. So, the inclu-
sion of phonetic information allows a better splitting of
the acoustic space. On the other hand, both CART and
CART+ systems performs similar, so there is no need to
tune the number of Gaussians. This is a very computa-
tional expensive part in GMM, and also in HMM tun-
ing the number of states. However, CART systems need
training data phonetically labeled, what restricts their ap-
plications.

Concerning the use of joint source-target information
to estimate HMM, from the experimental results it seems
better to use only source data. We must take into account
that using joint data increases the vector dimensions. This
result contrasts with the previous studies which showed
that GMM systems trained with only source data or with
joint source-target data had a similar performance [8].

4.2. Perceptual test

To evaluate the proposed systems an ABX test and a pref-
erence test has been carried out. In ABX test, A and B
represents either the source or target speaker and X the
converted speech. The listeners are asked to select if X
is closer to A or B. In the preference test, pairs of sen-
tences are presented, and the listeners are asked to select
the most natural one for each pair. The following pairs
have been chosen to be tested: GMM-sourceHMM and
GMM-CART with 20 training sentences, Each listener,
10 in total, evaluates three examples of each pair. All of



Figure 2: Performance index male — female: A) GMM,
B) source HMM, C) joint HMM A, D) joint HMM B, E)
CART, F) CART+

Figure 3: Performance index female — male: A) GMM,
B) source HMM, C) joint HMM A, D) joint HMM B, E)
CART, F) CART+

them had tests with different speech files and the systems
were presented in different order.

To synthesize the test speech data, the transformed
LPC filters derived from the transformed LSF are fed
with the original residual signal of the target speaker. As
we have presented a vocal tract conversion system, our
intention is to measure only the effects of the vocal tract,
assuming an ideal residual signal transformation.

The listeners reported that all the methods explained
in this paper achieve the changing in the speaker iden-
tity. When they are asked about GMM and source HMM
systems, they couldn’t notice any difference. But, when
GMM-CART pairs are presented, listeners chose the
CART system 71% of the time. These perceptual results
are correlated with the objective test.

5. Conclusions

In this paper, two new approaches are presented in or-
der to extend the GMM-based VC systems. The first
proposed system uses dynamic information to build the
speaker acoustic model. GMM are replaced by HMM to
model not only the probability density but also the dy-
namics of the speaker features. So, the transformation is
carried out according to sequences of frames.

The second proposed system introduces phonetic in-
formation in the estimation of the mapping function and
during the transformation, using CART decision trees.

The objective results have shown that GMM and
source HMM systems performs in a similar way, but
CART systems improves the performance of the conver-

sion. Also, with the proposed methodology, CART sys-
tems do not need any tuning of their parameters. Percep-
tual results are correlated with objective results.
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